已知拋物線x2=4y的焦點(diǎn)是橢圓  數(shù)學(xué)公式一個(gè)頂點(diǎn),橢圓C的離心率為數(shù)學(xué)公式,另有一圓O圓心在坐標(biāo)原點(diǎn),半徑為數(shù)學(xué)公式
(1)求橢圓C和圓O的方程;
(2)已知M(x0,y0)是圓O上任意一點(diǎn),過(guò)M點(diǎn)作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)公共點(diǎn),求證:l1⊥l2

(1)解:由x2=4y可得拋物線焦點(diǎn)坐標(biāo)為(0,1),∴b=1,
又∵,∴,∴a2=4,
,
∴橢圓C的方程為,圓O的方程為x2+y2=5
(2)證明:若點(diǎn)M的坐標(biāo)為(2,1),(2,-1),(-2,-1),(-2,1),則過(guò)這四點(diǎn)分別作滿足條件的直線l1,l2,若一條直線斜率為0,則另一條斜率不存在,則l1⊥l2
若直線l1,l2斜率都存在,則設(shè)過(guò)M與橢圓只有一個(gè)公共點(diǎn)的直線方程為y-y0=k(x-x0),



化簡(jiǎn)得
,

設(shè)直線l1,l2的斜率分別為k1,k2,因?yàn)閘1,l2與橢圓都只有一個(gè)公共點(diǎn),
所以k1,k2滿足,
,
∴l(xiāng)1⊥l2
分析:(1)確定拋物線焦點(diǎn)坐標(biāo),可得b的值,利用橢圓C的離心率為,另有一圓O圓心在坐標(biāo)原點(diǎn),半徑為,即可求橢圓C和圓O的方程;
(2)分類討論,利用韋達(dá)定理,計(jì)算斜率的積為-1,即可證得結(jié)論.
點(diǎn)評(píng):本題考查橢圓與圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、已知拋物線x2=4y的焦點(diǎn)F和點(diǎn)A(-1,8),點(diǎn)P為拋物線上一點(diǎn),則|PA|+|PF|的最小值為
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知拋物線x2=4y的焦點(diǎn)F和點(diǎn)A(-1,8),P為拋物線上一點(diǎn),則|PA|+|PF|的最小值是
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線x2=4y上的點(diǎn)P(非原點(diǎn))處的切線與x軸,y軸分別交于Q,R兩點(diǎn),F(xiàn)為焦點(diǎn).
(Ⅰ)若
PQ
PR
,求λ.
(Ⅱ)若拋物線上的點(diǎn)A滿足條件
PF
FA
,求△APR的面積最小值,并寫出此時(shí)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•溫州一模)如圖,已知拋物線x2=4y,過(guò)拋物線上一點(diǎn)A(x1,y1)(不同于頂點(diǎn))作拋物線的切線l,并交x軸于點(diǎn)C,在直線y=-1上任取一點(diǎn)H,過(guò)H作HD垂直x軸于D,并交l于點(diǎn)E,過(guò)H作直線HF垂直直線l,并交x軸于點(diǎn)F.
(I)求證:|OC|=|DF|;
(II)試判斷直線EF與拋物線的位置關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•浙江模擬)已知拋物線x2=4y,圓C:x2+(y-2)2=4,M(x0,y0),(x0>0,y0>0)為拋物線上的動(dòng)點(diǎn).
(Ⅰ)若y0=4,求過(guò)點(diǎn)M的圓的切線方程;
(Ⅱ)若y0>4,求過(guò)點(diǎn)M的圓的兩切線與x軸圍成的三角形面積S的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案