【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若有最大值,求的值.
【答案】(1)遞增區(qū)間是,遞減區(qū)間是.(2)3
【解析】試題分析:(1)根據(jù)復(fù)合函數(shù)單調(diào)性,先根據(jù)對稱軸求二次函數(shù)單調(diào)性,再根據(jù)復(fù)合性研究單調(diào)區(qū)間(2)根據(jù)a討論,函數(shù)單調(diào)性,再根據(jù)單調(diào)性確定函數(shù)最大值,最后根據(jù)方程解出的值.
試題解析:解:(1)當(dāng)時, ,對稱軸為,所以函數(shù)的遞增區(qū)間是,遞減區(qū)間是.
(2)當(dāng)時, 單調(diào)遞增,無最大值
當(dāng)時, 遞增區(qū)間是,遞減區(qū)間是,最大值為
當(dāng)時, 遞減區(qū)間是,遞增區(qū)間是,無最大值
綜上
點睛:1.復(fù)合函數(shù)單調(diào)性的規(guī)則
若兩個簡單函數(shù)的單調(diào)性相同,則它們的復(fù)合函數(shù)為增函數(shù);若兩個簡單函數(shù)的單調(diào)性相反,則它們的復(fù)合函數(shù)為減函數(shù).即“同增異減”.
2.函數(shù)單調(diào)性的性質(zhì)
(1)若f(x),g(x)均為區(qū)間A上的增(減)函數(shù),則f(x)+g(x)也是區(qū)間A上的增(減)函數(shù),更進(jìn)一步,即增+增=增,增-減=增,減+減=減,減-增=減;
(2)奇函數(shù)在其關(guān)于原點對稱的區(qū)間上單調(diào)性相同,偶函數(shù)在其關(guān)于原點對稱的區(qū)間上單調(diào)性相反.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:經(jīng)過點,離心率,直線的方程為 .
(1)求橢圓的方程;
(2)經(jīng)過橢圓右焦點的任一直線(不經(jīng)過點)與橢圓交于兩點,,設(shè)直線與相交于點,記的斜率分別為,問:是否為定值,若是,求出此定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標(biāo)值.若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.
(Ⅰ)根據(jù)圖1,估計乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);
(Ⅱ)若將頻率視為概率,某個月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?
(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?
甲生產(chǎn)線 | 乙生產(chǎn)線 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附:(其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面為矩形,D為的中點,AC⊥平面BCC1B1.
(Ⅰ)證明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的長;
(2)求B1D與平面ABB1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家劉徽是公元三世紀(jì)世界上最杰出的數(shù)學(xué)家,他在《九章算術(shù)圓田術(shù)》注中,用割圓術(shù)證明了圓面積的精確公式,并給出了計算圓周率的科學(xué)方法.所謂“割圓術(shù)”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的周長無限接近圓的周長,進(jìn)而來求得較為精確的圓周率(圓周率指圓周長與該圓直徑的比率).劉徽計算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑
,此時圓內(nèi)接正六邊形的周長為
,此時若將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3,當(dāng)用正二十四邊形內(nèi)接于圓時,按照上述算法,可得圓周率為__________.(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=,AD=CD=1.
(1)求證:BD⊥AA1.
(2)在棱BC上取一點E,使得AE∥平面DCC1D1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在R上的奇函數(shù),對x,y∈R都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)<0,f(-1)=2.
(1)求證:f(x)為奇函數(shù);
(2)求證:f(x)是R上的減函數(shù);
(3)求f(x)在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABCDEF.則下列結(jié)論不正確的是( )
A. CD∥平面PAF
B. DF⊥平面PAF
C. CF∥平面PAB
D. CF⊥平面PAD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com