已知函數(shù)f(x+1)是定義在R上的奇函數(shù),若對(duì)于任意給定的不等實(shí)數(shù)x1、x2,不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,則不等式f(1-x)<0的解集為
(-∞,0)
(-∞,0)
分析:根據(jù)題意,當(dāng)實(shí)數(shù)x1、x2,滿足x1<x2時(shí)有f(x1)-f(x2)>0,可得f(x)是定義在R上的減函數(shù).而f(x+1)是定義在R上的奇函數(shù),可算出f(1)=0,從而不等式f(1-x)<0即f(1-x)<f(1),結(jié)合f(x)的單調(diào)性即可得到原不等式的解集.
解答:解:∵任意給定的不等實(shí)數(shù)x1、x2,不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,
∴任意實(shí)數(shù)x1、x2,滿足x1<x2時(shí)有f(x1)-f(x2)>0,可得f(x)是定義在R上的減函數(shù)
∵f(x+1)是定義在R上的奇函數(shù),
∴f(x+1)=-f(1-x)對(duì)x∈R恒成立.令x=0,得f(1)=0
因此,不等式f(1-x)<0即f(1-x)<f(1)
∵f(x)是定義在R上的減函數(shù)
∴1-x>1,解之得x<0,原不等式的解集為(-∞,0)
故答案為:(-∞,0)
點(diǎn)評(píng):本題給出抽象函數(shù),在已知函數(shù)的單調(diào)性和奇偶性的情況下解關(guān)于x的不等式,著重考查了函數(shù)的基本性質(zhì)和抽象不等式的解法等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知函數(shù)f(x-1)=x2-2x+2,則f(x)=
x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①y=2x與y=log2x互為反函數(shù),其圖象關(guān)于y=x對(duì)稱;
②函數(shù)y=f(x)滿足f(2+x)=f(2-x),則其圖象關(guān)于直線x=2對(duì)稱;
③已知函數(shù)f(x-1)=x2-2x+1.則f(5)=26;
④已知△ABC,P為平面ABC外任意一點(diǎn),且PA⊥PB⊥PC,則點(diǎn)P在平面ABC內(nèi)的正投影是△ABC的垂心.
正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)為奇函數(shù),函數(shù)f(x-1)為偶函數(shù),且f(0)=2,則f(4)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•無錫二模)已知函數(shù)f(x+1)為奇函數(shù),函數(shù)f(x-1)為偶函數(shù),且f(0)=2,則f(4)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)=2x-1,則f(5)=
8
8

查看答案和解析>>

同步練習(xí)冊(cè)答案