精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=x2+bx+c,其圖象與y軸的交點為(0,1),且滿足f(1﹣x)=f(1+x).

(1)求f(x);

(2)設 m0,求函數g(x)在[0m]上的最大值;

(3)設h(x)=lnf(x),若對于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求實數t的取值范圍.

【答案】(1)f(x)=x2﹣2x+1;(2)

(3)實數t的取值范圍是﹣1<t<0.

【解析】試題分析:(1)根據截距和對稱軸得出b,c的值,得出f(x)的解析式;

(2)作出g(x)的函數圖象,根據圖象得出結論;

(3)化簡h(x)解析式,根據函數單調性得出關于t的恒等式,從而求出t的范圍.

試題解析:

(1)∵圖象與y軸的交點為(0,1),∴c=1,

∵f(1﹣x)=f(1+x),

函數f(x)的圖象關于直線x=1對稱,∴b=﹣2,

∴f(x)=x2﹣2x+1,

(2)∵f(x)=x2﹣2x+1=(x﹣1)2

,

作出g(x)的函數圖象如圖所示:

當0<m≤時,gmax(x)=g(m)=m﹣m2,

<m≤時,gmax(x)=g()=,

當m時,gmax(x)=g(m)=m2﹣m,

綜上,

(3)h(x)=2ln|x﹣1|,

所以h(x+1﹣t)=2ln|x﹣t|,h(2x+2)=2ln|2x+1|,

當x∈[0,1]時,|2x+1|=2x+1,

所以不等式等價于0<|x﹣t|<2x+1恒成立,

解得﹣x﹣1<t<3x+1,且x≠t,

由x∈[0,1],得﹣x﹣1∈[﹣2,﹣1],3x+1∈[1,4],

所以﹣1<t<1,

又x≠t,∵t[0,1],

實數t的取值范圍是﹣1<t<0.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,正三棱柱中,側棱, , 分別為棱的中點, 分別為線段的中點.

(1)求證:直線平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.
(Ⅰ)證明:平面ADB⊥平面BDC;
(Ⅱ)設BD=1,求三棱錐D﹣ABC的表面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)對一切x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知a∈R,設P:當 時,不等式f(x)+3<2x+a恒成立,Q:當x∈[﹣2,2]時,g(x)=f(x)﹣ax是單調函數,如果記使P成立的實數a的取值的集合為A,使Q成立的實數a的取值的集合為B,求A∩RB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處取得極值.

(1)求f(x)的表達式和極值.

(2)若f(x)在區(qū)間[m,m+4]上是單調函數,試求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若命題p:曲線 =1為雙曲線,命題q:函數f(x)=(4﹣a)x在R上是增函數,且p∨q為真命題,p∧q為假命題,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)滿足以下條件:①定義在正實數集上;②f( )=2;③對任意實數t,都有f(xt)=tf(x)(x∈R+).
(1)求f(1),f( )的值;
(2)求證:對于任意x,y∈R+ , 都有f(xy)=f(x)+f(y);
(3)若不等式f(loga(x﹣3a)﹣1)﹣f(﹣ )≥﹣4對x∈[a+2,a+ ]恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知實數滿足,實數,滿足,則的最小值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a∈R,設命題p:指數函數y=ax(a>0且a≠1)在R上單調遞增;命題q:函數y=ln(ax2﹣ax+1)的定義域為R,若“p且q”為假,“p或q”為真,求a的取值范圍.

查看答案和解析>>

同步練習冊答案