分析 (1)由題意可知:設(shè)直線AB的方程為:x=my+1,代入拋物線方程,由韋達定理可知:y1+y2=4m,y1•y2=-4,則$\overrightarrow{AF}$=(1-x1,-y1),$\overrightarrow{FB}$=(x2-1,y2),由$\overrightarrow{AF}$=3$\overrightarrow{FB}$,-y1=3y2,解得:m=±$\frac{\sqrt{3}}{3}$,即可求得直線AB的斜率;
(2)由(1)可知:丨y1-y2丨=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{16{m}^{2}+16}$=4$\sqrt{{m}^{2}+1}$,則四邊形OACB面積SOACB=2SAOB=$\frac{1}{2}$•丨OF丨•丨y1-y2丨=丨y1-y2丨,即可求得4$\sqrt{{m}^{2}+1}$≥4,當m=0時,四邊形OACB的面積最小,最小值為4.
解答 解:(1)由拋物線y2=4x的焦點在x軸上,焦點坐標F(1,0),
設(shè)直線AB的方程為:x=my+1,
則$\left\{\begin{array}{l}{x=my+1}\\{{y}^{2}=4x}\end{array}\right.$,整理得:y2-4my-4=0,
設(shè)A(x1,y1),B(x2,y2),
由韋達定理可知:y1+y2=4m,y1•y2=-4,
$\overrightarrow{AF}$=(1-x1,-y1),$\overrightarrow{FB}$=(x2-1,y2),
∵$\overrightarrow{AF}$=3$\overrightarrow{FB}$,
∴-y1=3y2,整理得:m2=$\frac{1}{3}$,解得:m=±$\frac{\sqrt{3}}{3}$,
∴直線AB的斜率k=$\frac{1}{m}$=±$\sqrt{3}$,
直線AB的斜率$\sqrt{3}$或-$\sqrt{3}$;
(2)由(1)可知:丨y1-y2丨=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{16{m}^{2}+16}$=4$\sqrt{{m}^{2}+1}$,
四邊形OACB面積SOACB=2SAOB=$\frac{1}{2}$•丨OF丨•丨y1-y2丨=丨y1-y2丨=4$\sqrt{{m}^{2}+1}$≥4,
當m=0時,四邊形OACB的面積最小,最小值為4.
點評 本題考查直線與拋物線的位置關(guān)系,考查韋達定理及向量的坐標坐標,三角形面積公式的應(yīng)用,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①②③ | B. | ①② | C. | ②③ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com