【題目】已知D= ,給出下列四個(gè)命題: P1:(x,y)∈D,x+y+1≥0;
P2:(x,y)∈D,2x﹣y+2≤0;
P3:(x,y)∈D, ≤﹣4;
P4:(x,y)∈D,x2+y2≤2.
其中真命題的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4
【答案】C
【解析】解:不等式組 的可行域如圖, p1:A(﹣2,0)點(diǎn),﹣2+0+1=﹣1,
故(x,y)∈D,x+y≥0為假命題;
p2:A(﹣1,3)點(diǎn),﹣2﹣3+2=﹣3,
故(x,y)∈D,2x﹣y+2≤0為真命題;
p3:C(0,2)點(diǎn), =﹣3,
故(x,y)∈D, ≤﹣4為假命題;
p4:(﹣1,1)點(diǎn),x2+y2=2
故(x,y)∈D,x2+y2≤2為真命題.
可得選項(xiàng)p2 , p4正確.
故選:C.
【考點(diǎn)精析】本題主要考查了二元一次不等式(組)所表示的平面區(qū)域的相關(guān)知識(shí)點(diǎn),需要掌握不等式組表示的平面區(qū)域是各個(gè)不等式所表示的平面區(qū)域的公共部才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1: + =1,圓C2:x2+y2=t經(jīng)過(guò)橢圓C1的焦點(diǎn).
(1)設(shè)P為橢圓上任意一點(diǎn),過(guò)點(diǎn)P作圓C2的切線,切點(diǎn)為Q,求△POQ面積的取值范圍,其中O為坐標(biāo)原點(diǎn);
(2)過(guò)點(diǎn)M(﹣1,0)的直線l與曲線C1 , C2自上而下依次交于點(diǎn)A,B,C,D,若|AB|=|CD|,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面,,,,,是的中點(diǎn).
(1)求證:;
(2)求證:面;
(3)求二面角E-AB-C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|﹣2|x+1|的最大值為k.
(1)求k的值;
(2)若a,b,c∈R, +b2=k,求b(a+c)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究小組欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,統(tǒng)計(jì)得到1至6月份每月9號(hào)的晝夜溫差與因患感冒而就診的人數(shù)的數(shù)據(jù),如下表:
日期 | 1月9號(hào) | 2月9號(hào) | 3月9號(hào) | 4月9號(hào) | 5月9號(hào) | 6月9號(hào) |
10 | 11 | 13 | 12 | 8 | 6 | |
22 | 25 | 29 | 26 | 16 | 12 |
該研究小組的研究方案是:先從這6組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求回歸方程,再用之前被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取1月和6月的數(shù)據(jù)作為檢驗(yàn)數(shù)據(jù),請(qǐng)根據(jù)剩下的2至5月的數(shù)據(jù),求出關(guān)于的線性回歸方程;(計(jì)算結(jié)果保留最簡(jiǎn)分?jǐn)?shù))
(2)若用(1)中所求的回歸方程作預(yù)報(bào),得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2人,則認(rèn)為得到的回歸方程是理想的,試問(wèn)該研究小組所得回歸方程是否理想?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某知名品牌汽車(chē)深受消費(fèi)者喜愛(ài),但價(jià)格昂貴.某汽車(chē)經(jīng)銷(xiāo)商推出A、B、C三種分期付款方式銷(xiāo)售該品牌汽車(chē),并對(duì)近期100位采用上述分期付款的客戶(hù)進(jìn)行統(tǒng)計(jì)分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷(xiāo)售中,該經(jīng)銷(xiāo)商每銷(xiāo)售此品牌汽車(chē)1倆所獲得的利潤(rùn)分別是1萬(wàn)元,2萬(wàn)元,3萬(wàn)元.現(xiàn)甲乙兩人從該汽車(chē)經(jīng)銷(xiāo)商處,采用上述分期付款方式各購(gòu)買(mǎi)此品牌汽車(chē)一輛.以這100位客戶(hù)所采用的分期付款方式的頻率代替1位客戶(hù)采用相應(yīng)分期付款方式的概率.
(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬(wàn)元)為該汽車(chē)經(jīng)銷(xiāo)商從甲乙兩人購(gòu)車(chē)中所獲得的利潤(rùn),求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為6,離心率為 ,F(xiàn)2為橢圓的右焦點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)M在圓x2+y2=8上,且M在第一象限,過(guò)M作圓x2+y2=8的切線交橢圓于P,Q兩點(diǎn),判斷△PF2Q的周長(zhǎng)是否為定值并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=lnx,其中e為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)y=f(x)g(x)在x=1處的切線方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ為常數(shù),求證:λ>e;
(3)若對(duì)任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是
A. 命題“若,則”的否命題為“若,則”;
B. 命題“”的否定是“”;
C. 命題“若x=y,則”的逆否命題為真命題;
D. “” 是“”的必要不充分條件.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com