【題目】已知函數(shù) (mR)

1)當(dāng)時(shí),

①求函數(shù)x=1處的切線(xiàn)方程;

②求函數(shù)上的最大,最小值.

2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

【答案】1)①;②函數(shù)上的最大值為,最小值為;(2.

【解析】

1)當(dāng)時(shí),求出函數(shù)的導(dǎo)數(shù).

①根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)x=1處的切線(xiàn)的斜率,寫(xiě)出切線(xiàn)的點(diǎn)斜式方程,最后化成一般形式即可;

②根據(jù)導(dǎo)函數(shù)的正負(fù)性判斷出函數(shù)的單調(diào)性,進(jìn)而根據(jù)函數(shù)的極值定義求出函數(shù)的極值,再比較給定區(qū)間端點(diǎn)函數(shù)值進(jìn)行求解即可;

2)求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)正負(fù)性的關(guān)系,得到不等式,常變量分離,構(gòu)造新函數(shù),判斷新函數(shù)的單調(diào)性,求出新函數(shù)的最值進(jìn)行求解即可.

1)當(dāng)時(shí),.

①當(dāng)x=1時(shí),,

所以函數(shù)x=1處的切線(xiàn)的斜率為,因此切線(xiàn)方程為:

;

②因?yàn)?/span>,所以當(dāng)時(shí),,函數(shù)單調(diào)遞減,

當(dāng)時(shí),,函數(shù)單調(diào)遞增,

所以當(dāng)時(shí),函數(shù)有極小值

所以函數(shù)上的最大值為,最小值為;

2,

因?yàn)楹瘮?shù)上單調(diào)遞增,

所以 時(shí)恒成立,

時(shí)恒成立,設(shè),,

因?yàn)楫?dāng)時(shí),函數(shù)單調(diào)遞增,所以

因此要想時(shí)恒成立,只需.

所以當(dāng)函數(shù)上單調(diào)遞增時(shí),實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱中,(底面為正三角形,側(cè)棱垂直于底面),側(cè)棱長(zhǎng),底面邊長(zhǎng),的中點(diǎn).

(1)求證:平面平面

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,對(duì)稱(chēng)軸為直線(xiàn)的拋物線(xiàn)軸交于兩點(diǎn),其中點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),作直線(xiàn).

1)求拋物線(xiàn)的解析式;

2)如圖,點(diǎn)是直線(xiàn)下方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),連結(jié).當(dāng)面積最大時(shí),求點(diǎn)的坐標(biāo);

3)如圖,在(2)的條件下,過(guò)點(diǎn)作于點(diǎn)軸于點(diǎn)繞點(diǎn)旋轉(zhuǎn)得到在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)或點(diǎn)落在軸上(不與點(diǎn)重合)時(shí),將沿射線(xiàn)平移得到,在平移過(guò)程中,平面內(nèi)是否存在點(diǎn)使得四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《復(fù)仇者聯(lián)盟4:終局之戰(zhàn)》是安東尼·羅素和喬·羅素執(zhí)導(dǎo)的美國(guó)科幻電影,改編自美國(guó)漫威漫畫(huà),自2019424日上映以來(lái)票房火爆.某電影院為了解在該影院觀(guān)看《復(fù)仇者聯(lián)盟4》的觀(guān)眾的年齡構(gòu)成情況,隨機(jī)抽取了100名觀(guān)眾的年齡,并分成,,,七組,得到如圖所示的頻率分布直方圖.

1)求這100名觀(guān)眾年齡的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)、中位數(shù);

2)該電影院擬采用抽獎(jiǎng)活動(dòng)來(lái)增加趣味性,觀(guān)眾可以選擇是否參與抽獎(jiǎng)活動(dòng)(不參與抽獎(jiǎng)活動(dòng)按原價(jià)購(gòu)票),活動(dòng)方案如下:每張電影票價(jià)格提高10元,同時(shí)購(gòu)買(mǎi)這樣電影票的每位觀(guān)眾可獲得3次抽獎(jiǎng)機(jī)會(huì),中獎(jiǎng)1次則獎(jiǎng)勵(lì)現(xiàn)金元,中獎(jiǎng)2次則獎(jiǎng)勵(lì)現(xiàn)金元,中獎(jiǎng)三次則獎(jiǎng)勵(lì)現(xiàn)金元,其中,已知觀(guān)眾每次中獎(jiǎng)的概率均為.

①以某觀(guān)眾三次抽獎(jiǎng)所獲得的獎(jiǎng)金總額的數(shù)學(xué)期望為評(píng)判依據(jù),若要使抽獎(jiǎng)方案對(duì)電影院有利,則最高可定為多少;

②據(jù)某時(shí)段內(nèi)的統(tǒng)計(jì),當(dāng)時(shí)該電影院有600名觀(guān)眾選擇參加抽獎(jiǎng)活動(dòng),并且每增加1元,則參加抽獎(jiǎng)活動(dòng)的觀(guān)眾增加100.設(shè)該時(shí)間段內(nèi)觀(guān)影的總?cè)藬?shù)不變,抽獎(jiǎng)活動(dòng)給電影院帶來(lái)的利潤(rùn)的期望為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】天津市某高中團(tuán)委在2019124日開(kāi)展了以“學(xué)法、遵法、守法”為主題的學(xué)習(xí)活動(dòng).為檢查該學(xué)校組織學(xué)生學(xué)習(xí)的效果,現(xiàn)從該校高一、高二、高三的學(xué)生中分別選取了4人,3人,3人作為代表進(jìn)行問(wèn)卷測(cè)試.具體要求:每位學(xué)生要從10個(gè)有關(guān)法律、法規(guī)的問(wèn)題中隨機(jī)抽出4個(gè)問(wèn)題進(jìn)行作答.

1)若從這10名學(xué)生中任選3人,求這3名學(xué)生分別來(lái)自三個(gè)年級(jí)的概率;

2)若這10人中的某學(xué)生能答對(duì)10道題中的7道題,另外3道題回答不對(duì),記表示該名學(xué)生答對(duì)問(wèn)題的個(gè)數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線(xiàn)的參數(shù)方程為為參數(shù)),設(shè)直線(xiàn)的極坐標(biāo)方程為.

(1)將曲線(xiàn)的參數(shù)方程化為普通方程,并指出其曲線(xiàn)是什么曲線(xiàn);

(2)設(shè)直線(xiàn)軸的交點(diǎn)為為曲線(xiàn)上一動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記焦點(diǎn)在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點(diǎn)為頂點(diǎn)作相似橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),且與橢圓僅有一個(gè)公共點(diǎn),試判斷的面積是否為定值(為坐標(biāo)原點(diǎn))?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種密碼鎖的密碼設(shè)置是在正邊形的每個(gè)頂點(diǎn)處賦值0和1兩個(gè)數(shù)中的一個(gè),同時(shí),在每個(gè)頂點(diǎn)處染紅、藍(lán)兩種顏色之一,使得任意相鄰的兩個(gè)頂點(diǎn)的數(shù)字或顏色中至少有一個(gè)相同.問(wèn):該種密碼鎖共有多少種不同的密碼設(shè)置?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知從境外回國(guó)的8位同胞中有1位被新冠肺炎病毒感染,需要通過(guò)核酸檢測(cè)是否呈陽(yáng)性來(lái)確定是否被感染.下面是兩種檢測(cè)方案:

方案一:逐個(gè)檢測(cè),直到能確定被感染者為止.

方案二:將8位同胞平均分為2組,將每組成員的核酸混合在一起后隨機(jī)抽取一組進(jìn)行檢測(cè),若檢測(cè)呈陽(yáng)性,則表明被感染者在這4位當(dāng)中,然后逐個(gè)檢測(cè),直到確定被感染者為止;若檢測(cè)呈陰性,則在另外一組中逐個(gè)進(jìn)行檢測(cè),直到確定被感染者為止.

1)根據(jù)方案一,求檢測(cè)次數(shù)不多于兩次的概率;

2)若每次核酸檢測(cè)費(fèi)用都是100元,設(shè)方案二所需檢測(cè)費(fèi)用為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案