【題目】已知函數(shù)y=x3﹣3x+c的圖象與x軸恰有兩個(gè)公共點(diǎn),則c=(
A.﹣2或2
B.﹣9或3
C.﹣1或1
D.﹣3或1

【答案】A
【解析】解:求導(dǎo)函數(shù)可得y′=3(x+1)(x﹣1),
令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;
∴函數(shù)在(﹣∞,﹣1),(1,+∞)上單調(diào)增,(﹣1,1)上單調(diào)減,
∴函數(shù)在x=﹣1處取得極大值,在x=1處取得極小值.
∵函數(shù)y=x3﹣3x+c的圖象與x軸恰有兩個(gè)公共點(diǎn),
∴極大值等于0或極小值等于0.
∴1﹣3+c=0或﹣1+3+c=0,
∴c=﹣2或2.
故選:A.
求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的極值點(diǎn),利用函數(shù)y=x3﹣3x+c的圖象與x軸恰有兩個(gè)公共點(diǎn),可得極大值等于0或極小值等于0,由此可求c的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知增函數(shù)y=f(x)的定義域?yàn)椋?,+∞)且滿(mǎn)足f(2)=1,f(xy)=f(x)+f(y),求滿(mǎn)足f(x)+f(x﹣3)≤2的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U={1,2,3,4},集合A={1,2},B={2,4},則U(A∪B)=(
A.{1,3,4}
B.{3,4}
C.{3}
D.{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“若a>b,則a+c>b+c”的否命題是(
A.若a≤b,則a+c≤b+c
B.若a+c≤b+c,則a≤b
C.若a+c>b+c,則a>b
D.若a>b,則a+c≤b+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U={x|x≤9,x∈N+},集合A={1,2,3},B={3,4,5,6},則U(A∪B)=(
A.{3}
B.{7,8}
C.{7,8,9}
D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知互異復(fù)數(shù)mn≠0,集合{m,n}={m2 , n2},則m+n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)增函數(shù),若f(x2﹣2)<f(2),則實(shí)數(shù)x的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一組數(shù)據(jù)x1 , x2 , …xn的方差為3,若數(shù)據(jù)ax1+b,ax2+b,…,axn+b(a,b∈R)的方差為12,則a的所有的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程2x1+x=5的解所在的區(qū)間是(
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案