【題目】已知函數(shù)f(x)= (b≠0且b是常數(shù)).
(1)如果方程f(x)=x有唯一解,求b值.
(2)在(1)的條件下,求證:f(x)在(﹣∞,﹣1)上是增函數(shù);
(3)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求負(fù)數(shù)b的取值范圍.
【答案】
(1)解:∵f(x)=x有唯一解 即 =x有唯一解,
∴x2+(b﹣1)x=0有唯一解,又b≠0,
∴△=(b﹣1)2=0解得b=1
(2)證明:∵由(1)得函數(shù)f(x)= ,
f′(x)= ,
當(dāng)x∈(﹣∞,﹣1)時(shí),f′(x)>0恒成立,
故f(x)在(﹣∞,﹣1)上是增函數(shù);
(3)解:若函數(shù)f(x)在(1,+∞)上是減函數(shù),
則f′(x)= <0在(1,+∞)上恒成立,
且恒有意義,
故 ,即
解得:﹣1≤b<0
【解析】(1)根據(jù)方程f(x)=x有唯一解,可得b的值;(2)求導(dǎo),根據(jù)當(dāng)x∈(﹣∞,﹣1)時(shí),f′(x)>0恒成立,可得:f(x)在(﹣∞,﹣1)上是增函數(shù);(3)若函數(shù)f(x)在(1,+∞)上是減函數(shù),則f′(x)= <0在(1,+∞)上恒成立,解得負(fù)數(shù)b的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的函數(shù) .
(1)用定義證明:f(x)為R上的奇函數(shù);
(2)用定義證明:f(x)在R上為減函數(shù);
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子裝有六張卡片,上面分別寫(xiě)著如下六個(gè)定義域?yàn)?/span>的函數(shù):
(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個(gè)新函數(shù),求所得函數(shù)是奇函數(shù)的概率;
(2)現(xiàn)從盒子中進(jìn)行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在二項(xiàng)式(axm+bxn)12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展開(kāi)式里最大系數(shù)項(xiàng)恰是常數(shù)項(xiàng).
(1)求它是第幾項(xiàng);
(2)求 的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=kax(k為常數(shù),a>0且a≠1)的圖象過(guò)點(diǎn)A(0,1)和點(diǎn)B(2,16).
(1)求函數(shù)的解析式;
(2)g(x)=b+ 是奇函數(shù),求常數(shù)b的值;
(3)對(duì)任意的x1 , x2∈R且x1≠x2 , 試比較 與 的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣2|.
(1)作出函數(shù)f(x)=x|x﹣2|的大致圖象;
(2)若方程f(x)﹣k=0有三個(gè)解,求實(shí)數(shù)k的取值范圍.
(3)若x∈(0,m](m>0),求函數(shù)y=f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga|x+1|(a>0且a≠1),當(dāng)x∈(0,1)時(shí),恒有f(x)<0成立,則函數(shù)g(x)=loga(﹣ x2+ax)的單調(diào)遞減區(qū)間是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以BC上一點(diǎn)O為圓心,以O(shè)B為半徑的圓交AB于點(diǎn)M,交BC于點(diǎn)N.
(1)求證:BABM=BCBN;
(2)如果CM是⊙O的切線,N為OC的中點(diǎn),當(dāng)AC=3時(shí),求AB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x||x﹣a|<4},B={x|x2﹣4x﹣5>0}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com