【題目】過點(diǎn)作曲線其中為自然對(duì)數(shù)的底數(shù)的切線,切點(diǎn)為設(shè)軸上的投影是點(diǎn),過點(diǎn)再作曲線的切線,切點(diǎn)為設(shè)軸上的投影是點(diǎn)依次下去,得到第個(gè)切點(diǎn)則點(diǎn)的坐標(biāo)為________

【答案】

【解析】

設(shè)T1(x1,),可得切線方程代入點(diǎn)P坐標(biāo),可解得x1=0,即T1(0,1),可得H1(0,0),再寫切線方程代入點(diǎn)H1(0,0),可得T2(1,e),H2(1,0),…

由此可推得規(guī)律,從而可得的坐標(biāo)

設(shè)T1(x1,),此處的導(dǎo)數(shù)為

故切線方程為y﹣(x﹣x1),代入點(diǎn)P(﹣1,0)

可得0﹣(﹣1﹣x1),解得x1=0,即T1(0,1),H1(0,0),

同理可得過點(diǎn)H1再作曲線C的切線方程為y﹣(x﹣x2),代入點(diǎn)H1(0,0),

可得0﹣(0﹣x2),可解得x2=1,故T2(1,e),H2(1,0),

依次下去,可得Tn+1的坐標(biāo)為(n,en),即得=

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的不等式(mx-(m+1))(x-2)>0(mR)的解集為集合P

(I)當(dāng)m>0時(shí),求集合P;

(II)若{}P,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),當(dāng)x = -1時(shí)取得極大值7,當(dāng)x = 3時(shí)取得極小值;

(1)求a,b的值;

(2)求f(x)的極小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)處取得極大值,則實(shí)數(shù)的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)證明函數(shù)f(x)在(﹣1,+∞)上為單調(diào)遞增函數(shù);
(2)若x∈[0,2],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè):實(shí)數(shù)滿足,其中;

:實(shí)數(shù)滿足.

Ⅰ)若,為真,求實(shí)數(shù)的取值范圍;

Ⅱ)若的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求證:﹣5﹣f(x1)<f(x2)<﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說“如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題”某班針對(duì)“高中生物理對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績(jī),如表:

編號(hào)
成績(jī)

1

2

3

4

5

物理(x)

90

85

74

68

63

數(shù)學(xué)(y)

130

125

110

95

90

(參考公式:b= , = b ,)參考數(shù)據(jù):902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.
(1)求數(shù)學(xué)y成績(jī)關(guān)于物理成績(jī)x的線性回歸方程 = x+ (b精確到0.1),若某位學(xué)生的物理成績(jī)?yōu)?0分時(shí),預(yù)測(cè)他的物理成績(jī).
(2)要從抽取的這五位學(xué)生中隨機(jī)選出三位參加一項(xiàng)知識(shí)競(jìng)賽,以X表示選中的學(xué)生的數(shù)學(xué)成績(jī)高于100分的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方體ABCD﹣A1B1C1D1中AC1與BD1的交點(diǎn),則△PAC在該正方體各個(gè)面上的射影可能是(
A.①②③④
B.①③
C.①④
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案