精英家教網 > 高中數學 > 題目詳情

【題目】設函數是定義在R上的奇函數,且對任意都有,當時,,則的值為( )

A. B. 1 C. D. -2

【答案】D

【解析】

由于對任意xR都有fx)=fx+4),則4fx)的周期,從而f2019+f2020)=f4×504+3+f4×505)=f3+f0= f-1+f0=f1+f0),再根據fx)的奇偶性可得f0)=0,代入求解即可.

fx)是定義在R上的奇函數,得f0)=0,

x∈(0,2)時,fx)=2x

所以f1)=2,

因為對任意xR都有fx)=fx+4),

所以4fx)的周期,

所以f2019+f2020)=f4×504+3+f4×505)=f3+f0= f-1+f0=f1+f0=-2+0=-2.

故選:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直三棱柱中, , 是棱的中點.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋中有6個球,其中4個白球,2個紅球,從袋中任意取出兩球,求下列事件的概率:

(1) 取出的兩球1個是白球,另1個是紅球;

(2) 取出的兩球至少一個是白球。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱臺中, 分別是, 的中點, 平面, 是等邊三角形, , ,.

(1)證明: 平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,MN分別是邊長為1的正方形ABCD的邊BCCD的中點,將正方形沿對角線AC折起,使點D不在平面ABC內,則在翻折過程中,有以下結論:

①異面直線ACBD所成的角為定值.

②存在某個位置,使得直線AD與直線BC垂直.

③存在某個位置,使得直線MN與平面ABC所成的角為45°.

④三棱錐M-ACN體積的最大值為.

以上所有正確結論的序號是__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中,,D是BC的中點

(1)求證:平面;

2).求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.

(1)求橢圓的標準方程;

(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C的焦點為F,拋物線C與直線l1的一個交點為,且為坐標原點).

(Ⅰ)求拋物線C的方程;

(II)不過原點的直線l2l1垂直,且與拋物線交于不同的兩點AB,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】網約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時也解決了很多勞動力的就業(yè)問題,據某著名網約車公司“滴滴打車”官網顯示,截止目前,該公司已經累計解決退伍軍人轉業(yè)為兼職或專職司機三百多萬人次,梁某即為此類網約車司機,據梁某自己統(tǒng)計某一天出車一次的總路程數可能的取值是20、22、24、26、28、,它們出現的概率依次是、、、t、

(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;

(2)網約車計費細則如下:起步價為5元,行駛路程不超過時,租車費為5元,若行駛路程超過,則按每超出(不足也按計程)收費3元計費.依據以上條件,計算梁某一天中出車一次收入的均值和方差.

查看答案和解析>>

同步練習冊答案