四邊形的菱形,繞AC將該菱形折成二面角,記異面直線、所成角為,與平面所成角為,當最大時,二面角等于(        )
A.B.C.D.
顯然無論怎樣旋轉  ,∴  , 最大,即最大 ,∵  ,則當AD與平面ABC所成的角為 ,此時AD所在平平ABC內射影與AC重合,即二面角為直二面角 .
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

把正方形ABCD沿對角線AC折起,當A、B  C、D四點為頂點的三棱錐體積最大時,直線BD與平面ABC所成的角的大小為(   )
A.      B.      C.       D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正四棱錐的一個對角截面與一個側面的面積比為,則其側面與底面的夾角為(     ).
、;    ;   、;    、 .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC和△DBC所在的兩個平面互相垂直,且AB=BC=BD,∠ABC=
DBC=120°,求
(1) AD連線和直線BC所成角的大。
(2) 二面角ABDC的大小

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設D、E是△ABC的邊AB上的兩點,已知∠ACD=∠BCE,AC=14,AD=7,AB=28,CE=12.求BC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)

如圖,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,點E、M分別為A1B、C1C的中點,過點A1,B,M三點的平面A1BMN交C1D1于點N.
(Ⅰ)求證:EM∥平面A1B1C1D1;
(Ⅱ)求二面角B—A1N—B1的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知P為△ABC所在平面外的一點,PC⊥AB,PC=AB=2,E、F分別為PA和BC的中點
(1)求EF與PC所成的角;
(2)求線段EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正三棱柱ABC-A1B1C1中,若AB=
2
,BB1=1,則AB1與C1B所成角的大小為( 。
A.60°B.90°C.105°D.75°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知平面的一條斜線和它在平面內的射影的夾角是,且平面內的直線和斜線在平面內的射影的夾角是,則直線所成的角是        (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案