已知曲線的方程為,過原點(diǎn)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,如此下去,一般地,過點(diǎn)作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,設(shè)點(diǎn)).
(1)指出,并求的關(guān)系式();
(2)求)的通項(xiàng)公式,并指出點(diǎn)列,,向哪一點(diǎn)無限接近?說明理由;
(3)令,數(shù)列的前項(xiàng)和為,試比較的大小,并證明你的結(jié)論.
(1);(2),;(3).

試題分析:(1)由于,點(diǎn),又都是拋物線上的點(diǎn),代入進(jìn)去變形可得到的關(guān)系為;(2)由于只要求數(shù)列的奇數(shù)項(xiàng),因此把(1)中得到的關(guān)系式中分別為代換,得到兩個(gè)等式相減可得的關(guān)系式,用累加法可求得通項(xiàng)公式,當(dāng)時(shí),,即得極限點(diǎn)為;(3)求出,是一個(gè)等比數(shù)列,其,于是,要比較的大小,只要比較的即可,可計(jì)算前幾個(gè)數(shù),時(shí),,時(shí),,時(shí),時(shí),,可以歸納出結(jié)論,時(shí)有,這個(gè)可用二項(xiàng)式定理證明,,由于,展開式中至少有4項(xiàng),因此.
試題解析:(1).                         (1分)
設(shè),,由題意得 .     (2分)
                      (4分)
(2)分別用代換上式中的n得
 ()       (6分)
,,              (8分)
,所以點(diǎn)列, ,, 向點(diǎn)無限接近.     (10分)
(3),.     (12分)
,只要比較.  (13分)
 (15分)
當(dāng)n=1時(shí),                            (16分)
當(dāng)n=2時(shí),                            (17分)
當(dāng)n>2時(shí),.                          (18分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓和橢圓的離心率相同,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),過點(diǎn)作直線交橢圓兩點(diǎn),且恰為弦的中點(diǎn)。求證:無論點(diǎn)怎樣變化,的面積為常數(shù),并求出此常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,短軸的端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),弦的垂直平分線與軸相交于點(diǎn).設(shè)弦的中點(diǎn)為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點(diǎn)分別為、,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn),證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:的離心率,原點(diǎn)到過點(diǎn),的直線的距離是.
(1)求橢圓的方程;
(2)若橢圓上一動(dòng)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,求 的取值范圍;
(3)如果直線交橢圓于不同的兩點(diǎn),且,都在以為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓的方程為,定直線的方程為.動(dòng)圓與圓外切,且與直線相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點(diǎn), 過點(diǎn)作直線的垂線恰好經(jīng)過點(diǎn),并交軌跡于異于點(diǎn)的點(diǎn),求直線的方程及的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸端點(diǎn)分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,是橢圓上關(guān)于軸對(duì)稱的兩個(gè)不同點(diǎn),直線軸交于點(diǎn),判斷以線段為直徑的圓是否過點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)為F,過F作直線交拋物線于A、B兩點(diǎn),設(shè)(  )
A.4       B.8       C.       D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于曲線=1,給出下面四個(gè)命題:
(1)曲線不可能表示橢圓;
(2)若曲線表示焦點(diǎn)在x軸上的橢圓,則1<;
(3)若曲線表示雙曲線,則<1或>4;
(4)當(dāng)1<<4時(shí)曲線表示橢圓,其中正確的是(      )
A.(2)(3)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

同步練習(xí)冊(cè)答案