當(dāng)n=1時(shí),有(a-b)(a+b)=a2-b2;當(dāng)n=2時(shí),有(a-b)(a2+ab+b2)=a3-b3;當(dāng)n=3時(shí),有(a-b)(a3+a2b+ab2+b3)=a4-b4;當(dāng)n=4時(shí),有(a-b)(a4+a3b+a2b2+ab3+b4)=a5-b5;當(dāng)n∈N*時(shí),可歸納出的結(jié)論是 .
【答案】分析:根據(jù)所給信息,可知兩因式中,一項(xiàng)為(a-b),另一項(xiàng)每一項(xiàng)的次數(shù)均為n-1,而且按照字母a的降冪排列,故可得答案.
解答:解:由題意,當(dāng)n=1時(shí),有(a-b)(a+b)=a2-b2;
當(dāng)n=2時(shí),有(a-b)(a2+ab+b2)=a3-b3;
當(dāng)n=3時(shí),有(a-b)(a3+a2b+ab2+b3)=a4-b4;
當(dāng)n=4時(shí),有(a-b)(a4+a3b+a2b2+ab3+b4)=a5-b5;
所以當(dāng)n∈N*時(shí),有(a-b)(an+an-1b+…+abn-1+bn)=an-bn;
故答案為當(dāng)n∈N*時(shí),有(a-b)(an+an-1b+…+abn-1+bn)=an+1-bn+1;
點(diǎn)評:本題的考點(diǎn)是歸納推理,主要考查信息的處理,關(guān)鍵是根據(jù)所給信息,可知兩因式中,一項(xiàng)為(a-b),另一項(xiàng)每一項(xiàng)的次數(shù)均為n-1,而且按照字母a的降冪排列.