分析 (1)由f(x)+g(x)=$\frac{1}{x-1}$,得-f(x)+g(x)=-$\frac{1}{x+1}$,聯(lián)立方程組能求出f(x),g(x).
(2)由h(x)=f(x)-g(x)═$\frac{x}{{x}^{2}-1}-\frac{1}{{x}^{2}-1}$=$\frac{1}{x+1}$,能求出h($\frac{1}{x}$).
(3)由h(x)+h($\frac{1}{x}$)=$\frac{1}{x+1}+\frac{1}{\frac{1}{x}+1}$=1,能求出h(2)+h(3)+h(4)+…+h(2016)+h($\frac{1}{2}$)+h($\frac{1}{3}$)+h($\frac{1}{4}$)+…+h($\frac{1}{2016}$)的值.
解答 解:(1)由題意,f(x)+g(x)=$\frac{1}{x-1}$,①
f(-x)+g(-x)=$\frac{1}{-x-1}$,即-f(x)+g(x)=-$\frac{1}{x+1}$,②
由①②聯(lián)立解得f(x)=$\frac{x}{{x}^{2}-1}$,g(x)=$\frac{1}{{x}^{2}-1}$.…(6分)
(2)h(x)=f(x)-g(x)═$\frac{x}{{x}^{2}-1}-\frac{1}{{x}^{2}-1}$=$\frac{1}{x+1}$,
∴h($\frac{1}{x}$)=$\frac{1}{\frac{1}{x}+1}$=$\frac{x}{x+1}$.…(8分)
(3)∵h(yuǎn)(x)+h($\frac{1}{x}$)=$\frac{1}{x+1}+\frac{1}{\frac{1}{x}+1}$=1,…(10分)
∴h(2)+h(3)+h(4)+…+h(2016)+h($\frac{1}{2}$)+h($\frac{1}{3}$)+h($\frac{1}{4}$)+…+h($\frac{1}{2016}$)
=[h(2)+h($\frac{1}{2}$)]+[h(3)+h($\frac{1}{3}$)]+…+h(2016)+h($\frac{1}{2016}$)]
=2015.…(12分)
點(diǎn)評 本題考查函數(shù)解析式的求法,考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | ±$\frac{1}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a)<f(2a) | B. | f(a2)<f(a) | C. | f(a2+a)<f(a) | D. | f(a2+1)>f(a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<1 | B. | a≥1 | C. | b≤1 | D. | b≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com