已知函數(shù)(x∈R),且
(1)判斷函數(shù)y=f(x)在R上的單調(diào)性,并用定義法證明;
(2)若,求x的取值范圍.
【答案】分析:(1)由求出m的值,得到函數(shù)f(x)的解析式.任取x1,x2∈R,且x1<x2,我們構(gòu)造出f(x2)-f(x1)的表達(dá)式,根據(jù)實數(shù)的性質(zhì),我們易出f(x2)-f(x1)的符號,進(jìn)而根據(jù)函數(shù)單調(diào)性的定義,得到答案.
(2)由(1)知函數(shù)y=f(x)在R上為單調(diào)增函數(shù),根據(jù)題意脫去函數(shù)符號“f“,轉(zhuǎn)化為關(guān)于x的分式不等式,解之即得.
解答:解:(1)由已知得,m3=8,∴m=2…(3分)
==
任取x1,x2∈R,且x1<x2==
,∴
又∵x2>x1,∴,∴
,即f(x2)-f(x1)>0,f(x2)>f(x1
∴函數(shù)y=f(x)在R上為單調(diào)增函數(shù).                       …(9分)
(2)∵,由(1)知函數(shù)y=f(x)在R上為單調(diào)增函數(shù),
,
化簡得,
…(14分)(不寫集合形式不扣分)
點評:本題考查的知識點是函數(shù)單調(diào)性的判斷與證明,其中作差法(定義法)證明函數(shù)的單調(diào)性是我們中學(xué)階段證明函數(shù)單調(diào)性最重要的方法,一定要掌握其解的格式和步驟.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省宜春市上高二中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(x∈R).若,.求cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省江門市新會一中高三(上)第四次檢測數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),x∈R,且
(1)求A的值;
(2)設(shè),,,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省遵義市遵義四中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)求使函數(shù)f(x)取得最大值的x的集合;
(3)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕尾市陸豐東海中學(xué)高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),x∈R
(1)求函數(shù)f(x)的最大值及對應(yīng)的x的取值集合;
(2)在給定的坐標(biāo)系中,畫出函數(shù)y=f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),x∈R,且
(1)求A的值;
(2)設(shè),,,求cos(α+β)的值.

查看答案和解析>>

同步練習(xí)冊答案