【題目】已知某地每單位面積菜地年平均使用氮肥量x(單位:kg)與每單位面積蔬菜年平均產(chǎn)量Y(單位:t)之間的關(guān)系有如下數(shù)據(jù):
年份 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
x/kg | 70 | 74 | 80 | 78 | 85 | 92 | 90 | 95 |
Y/t | 5.1 | 6.0 | 6.8 | 7.8 | 9.0 | 10.2 | 10.0 | 12.0 |
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
x/kg | 92 | 108 | 115 | 123 | 130 | 138 | 145 | |
Y/t | 11.5 | 11.0 | 11.8 | 12.2 | 12.5 | 12.8 | 13.0 |
(1)求x與Y之間的相關(guān)系數(shù),并檢驗(yàn)是否線性相關(guān);
(2)若線性相關(guān),求每單位面積蔬菜年平均產(chǎn)量Y與每單位面積菜地年平均使用氮肥量x之間的回歸直線方程,并估計(jì)每單位面積菜地年平均使用氮肥150 kg時(shí),每單位面積蔬菜的年平均產(chǎn)量.
【答案】(1)見(jiàn)解析;(2)14.7013
【解析】分析:(1)先計(jì)算出=101,10.11,=161 125,=1 628.55,xiyi=16 076.8,再求x與Y之間的相關(guān)系數(shù),并檢驗(yàn)是否線性相關(guān).(2)先利用最小二乘法求回歸直線方程=0.093 7x+0.646 3,再估計(jì)每單位面積菜地年平均使用氮肥150 kg時(shí),每單位面積蔬菜的年平均產(chǎn)量.
詳解:(1)列出下表,并用科學(xué)計(jì)算器進(jìn)行有關(guān)計(jì)算:
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
xi | 70 | 74 | 80 | 78 | 85 | 92 | 90 | 95 |
yi | 5.1 | 6.0 | 6.8 | 7.8 | 9.0 | 10.2 | 10.0 | 12.0 |
xiyi | 357 | 444 | 544 | 608.4 | 765 | 938.4 | 900 | 1 140 |
i | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
xi | 92 | 108 | 115 | 123 | 130 | 138 | 145 | |
yi | 11.5 | 11.0 | 11.8 | 12.2 | 12.5 | 12.8 | 13.0 | |
xiyi | 1 058 | 1 188 | 1 357 | 1 500.6 | 1 625 | 1 766.4 | 1 885 |
=101,10.11,=161 125,=1 628.55,xiyi=16 076.8,
故蔬菜產(chǎn)量與使用氮肥量的相關(guān)系數(shù)
r=≈0.864 3.
由小概率0.05與n-2=13在教材附表中查得r0.05=0.514,|r|>r0.05,從而說(shuō)明有95%的把握認(rèn)為蔬菜產(chǎn)量與使用氮肥量之間存在著線性相關(guān)關(guān)系.
(2)設(shè)所求的回歸直線方程為x+,則0.093 7,=10.11-0.093 7×101=0.646 3,所以回歸直線方程為=0.093 7x+0.646 3.
所以當(dāng)每單位面積菜地年平均使用氮肥150 kg時(shí),每單位面積蔬菜的年平均產(chǎn)量約為0.093 7×150+0.646 3=14.7013(t).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校選派甲、乙、丙、丁、戊5名學(xué)生代表學(xué)校參加市級(jí)“演講”和“詩(shī)詞”比賽,下面是他們的一段對(duì)話.甲說(shuō):“乙參加‘演講’比賽”;乙說(shuō):“丙參加‘詩(shī)詞’比賽”;丙說(shuō)“丁參加‘演講’比賽”;丁說(shuō):“戊參加‘詩(shī)詞’比賽”;戊說(shuō):“丁參加‘詩(shī)詞’比賽”.
已知這5個(gè)人中有2人參加“演講”比賽,有3人參加“詩(shī)詞”比賽,其中有2人說(shuō)的不正確,且參加“演講”的2人中只有1人說(shuō)的不正確.根據(jù)以上信息,可以確定參加“演講”比賽的學(xué)生是
A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分。每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品。
(Ⅰ)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為,求的概率;
(Ⅱ)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問(wèn):他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,圓M與y軸相切,并且經(jīng)過(guò)點(diǎn),.
(1)求圓M的方程;
(2)過(guò)點(diǎn)作圓M的兩條互垂直的弦AC、BD,求四邊形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標(biāo)方程;
(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個(gè)相等實(shí)數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[1,2]時(shí),求f(x)的值域;
(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正三棱錐P﹣ABC,點(diǎn)P,A,B,C都在半徑為 的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com