數(shù)列
上,
(1)求數(shù)列
的通項公式;
(2)若
(I)
上。
…2分
是以3為首項,以2為公差的等差數(shù),…3分
…5分
(II)
① 6分
② …7分
由①—②得
…9分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知三個數(shù)成等差數(shù)列,其和為21,若第二個數(shù)減去1 ,第三個數(shù)加上1,則三個數(shù)成等比數(shù)列. 求原來的三個數(shù).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知數(shù)列{
}為公差不為零的等差數(shù)列,
=1,各項均為正數(shù)的等比數(shù)列{
}的第1
項、第3項、第5項分別是
、
、
.
(I
)求數(shù)列{
}與{
}的通項公式;
(Ⅱ)求數(shù)列{
}的前
項和.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在數(shù)列
中,
,其中
.
(Ⅰ)求證:數(shù)列
為等差數(shù)列;
(Ⅱ)求證:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分16分)
對于數(shù)列
,如果存在一個正整數(shù)
,使得對任意的
(
)都有
成立,那么就把這樣一類數(shù)列
稱作周期為
的周期數(shù)列,
的最小值稱作數(shù)列
的最小正周期,以下簡稱周期.例如當
時
是周期為
的周期數(shù)列,當
時
是周期為
的周期數(shù)列.
(1)設數(shù)列
滿足
(
),
(
不同時為0),求證:數(shù)列
是周期為
的周期數(shù)列,并求數(shù)列
的前2012項的和
;
(2)設數(shù)列
的前
項和為
,且
.
①若
,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
②若
,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
(3)設數(shù)列
滿足
(
),
,
,數(shù)列
的前
項和為
,試問是否存在實數(shù)
,使對任意的
都有
成立,若存在,求出
的取值范圍
;不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設等比數(shù)列
的前
項和為
,已知
N
).
(Ⅰ)
求數(shù)列
的通項公式;
(Ⅱ)在
與
之間插入n個數(shù),使這n+2個數(shù)組成公差為
的等差數(shù)列,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
數(shù)列{
an}的首項為3,{
bn}為等差數(shù)列且
bn=
an+1-
an(
n∈N
*),若
b3=-2,
b10=12,則
a8=( )
查看答案和解析>>