【題目】已知橢圓,離心率為,并過點(diǎn).

(1)求橢圓方程;

(2)若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn)。求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】(1)(2)直線過定點(diǎn),定點(diǎn)坐標(biāo)為

【解析】

(1)可通過橢圓離心率為得出,再代入點(diǎn)得出,最后通過橢圓性質(zhì)得出,聯(lián)立解得橢圓方程;

(2)首先可以設(shè)出定點(diǎn)坐標(biāo)通過與橢圓方程聯(lián)立解出以及的值,

然后通過得出算式,帶入的值,解出的值,最后得出結(jié)果。

(1)由已知得,解得,橢圓方程為;

( 2)設(shè),由,

,

,

因?yàn)橐?/span>為直徑的圓過橢圓的右頂點(diǎn)

所以,

,

整理得:

解得:,且滿足

當(dāng)時(shí),,直線過定點(diǎn)與已知矛盾;

當(dāng)時(shí),,直線過定點(diǎn),

綜上可知,直線過定點(diǎn),定點(diǎn)坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰梯形ABCD中,E、F分別是CD、AB的中點(diǎn),CD=2,AB=4,AD=BC=.沿EF將梯形AFED折起,使得∠AFB=60°,如圖.

(1)若G為FB的中點(diǎn),求證:AG⊥平面BCEF;

(2)求二面角C-AB-F的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l:y=2x﹣1與雙曲線,)相交于A、B兩個(gè)不

同的點(diǎn),且(O為原點(diǎn)).

(1)判斷是否為定值,并說明理由;

(2)當(dāng)雙曲線離心率時(shí),求雙曲線實(shí)軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).

(1)求橢圓的方程;

(2)直線與橢圓交于兩點(diǎn),點(diǎn)位于第一象限,是橢圓上位于直線兩側(cè)的動點(diǎn).

(i)若直線的斜率為,求四邊形面積的最大值;

(ii)當(dāng)點(diǎn)運(yùn)動時(shí),滿足,問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)為何值時(shí),軸為曲線的切線;

(2)用表示中的最小值,設(shè)函數(shù),討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax對任意的實(shí)數(shù)x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在軸非負(fù)半軸上,半徑為2的圓C與直線相切.

(1)求圓C的方程;

(2)設(shè)不過原點(diǎn)O的直線l與圓O:x2+y2=4相交于不同的兩點(diǎn)A,B.①求△OAB的面積的最大值;②在圓C上,是否存在點(diǎn)M(m,n),使得直線l的方程為mx+ny=1,且此時(shí)△OAB的面積恰好取到①中的最大值?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三角形的三邊長分別為3,4,5,P是三角形內(nèi)的一點(diǎn),則點(diǎn)P到這個(gè)三角形三邊的距離的積的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列選項(xiàng)中,說法正確的是(
A.命題“?x0∈R,x02﹣x0≤0”的否定為“?x∈R,x2﹣x>0”
B.命題“在△ABC中,A>30°,則sinA> ”的逆否命題為真命題
C.設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分必要條件
D.若非零向量 、 滿足| + |=| |+| |,則 共線

查看答案和解析>>

同步練習(xí)冊答案