【題目】定義在[﹣1,1]上的奇函數(shù)f(x)滿足當(dāng)0<x≤1時(shí),f(x)= ,
(1)求f(x)在[﹣1,1]上的解析式;
(2)判斷并證明f(x)在[﹣1,0)上的單調(diào)性;
(3)當(dāng)x∈(0,1]時(shí),方程 ﹣2x﹣m=0有解,試求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:設(shè)x∈[﹣1,0),則﹣x∈(0,1],
f(﹣x)= = ,
∵f(x)是奇函數(shù),
∴f(﹣x)=﹣f(x),
∴f(x)=﹣ ,
∴f(x)=
(2)解:設(shè)﹣1<x1﹣x2<0,
∴f(x1)﹣f(x2)=﹣ + = ,
∵x1<x2,∴ ﹣ <0,﹣2<x1+x2<0,
∴ ﹣1<0,
∴f(x1)﹣f(x2)>0,
∴f(x)在[﹣1,0)遞減
(3)解:方程 ﹣2x﹣m=0有解,
即m=4x+1﹣2x在(0,1]上有解,
令2x=t,t∈(1,2],
t2﹣t+1∈(1,3],
∴m∈(1,3]
【解析】1、本題考查的是函數(shù)奇偶性的應(yīng)用以及解析式的求法。
2、本題考查的是用定義證明函數(shù)的單調(diào)性。
3、本題考查的是復(fù)合函數(shù)根的存在情況。
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的判斷方法的相關(guān)知識點(diǎn),需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是( )
A.f(x)=2x
B.f(x)=xsinx
C.
D.f(x)=﹣x|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|+x.
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求所有的實(shí)數(shù)a,使得對任意x∈[1,4],函數(shù)f(x)的圖象恒在函數(shù)g(x)=x+4圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R的函數(shù)f(x)滿足以下條件:
①對任意實(shí)數(shù)x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);
②當(dāng)x>0時(shí),f(x)>0;
③f(1)=1.
(1)求f(2),f(0)的值;
(2)若f(2x)﹣a≥af(x)﹣5對任意x恒成立,求a的取值范圍;
(3)求不等式 的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=x2(x﹣a).
(1)若函數(shù)f(x)在區(qū)間 內(nèi)是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值h(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)子區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個(gè)“開心點(diǎn)”,也稱f(x)在區(qū)間D上存在開心點(diǎn).若函數(shù)f(x)=ax2﹣2x﹣2a﹣ 在區(qū)間[﹣3,﹣ ]上存在開心點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.[﹣ ,0]
C.[﹣ ,0]
D.[﹣ ,﹣ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(x)= ,則關(guān)于x的方程f(x)+a=0(0<a<1)的所有根之和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中,正確的是( )
A.奇函數(shù)的圖象一定過原點(diǎn)
B.y=x2+1(﹣4<x≤4)是偶函數(shù)
C.y=|x+1|﹣|x﹣1|是奇函數(shù)
D.y=x+1是奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷中正確的是( )
A. 是偶函數(shù)
B. 是奇函數(shù)
C. 是偶函數(shù)
D. 是奇函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com