已知m∈R,設(shè)條件p:不等式(m2-1)x2+(m+1)x+1≥0對(duì)任意的x∈R恒成立;條件q:關(guān)于x的不等式|x+1|+|x-2|<m的解集為Φ.
(1)分別求出使得p以及q為真的m的取值范圍;
(2)若復(fù)合命題“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.
分析:本題考查的知識(shí)點(diǎn)是復(fù)合命題的真假判定,解決的辦法是先判斷組成復(fù)合命題的簡(jiǎn)單命題的真假,再根據(jù)真值表進(jìn)行判斷.
解答:解:(1)∵p:不等式(m2-1)x2+(m+1)x+1≥0對(duì)任意的x∈R恒成立
當(dāng)p為真時(shí),
∴m=-1或
m2-1>0
△=(m+1)2-4(m2-1)≤0
?m≤-1或m≥
5
3

又∵q:關(guān)于x的不等式|x+1|+|x-2|<m的解集為Φ
當(dāng)q為真,
∴(|x+1|+|x-2|)min≥m?m≤3,
∴p真時(shí)m的取值范圍為A={m|m≤-1或m≥
5
3
}
,q真時(shí)m的取值范圍為B={m|m≤3};
(2)∵“p或q”為真,“p且q”為假,
∴p和q一真一假,分兩況討論:
1°當(dāng)p真且q假時(shí),有A∩CRB={m|m>3};
2°當(dāng)p假且q真時(shí),有(CRA)∩B={m|-1<m<
5
3
}
,
1°,2°取并,
即得“p或q”為真,“p且q”為假時(shí)實(shí)數(shù)m的取值范圍是{m|-1<m<
5
3
或m>3}
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是復(fù)合命題的真假判定,屬于基礎(chǔ)題目
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-3,0)﹑N(3,0),P為坐標(biāo)平面上的動(dòng)點(diǎn),且直線PM與直線PN的斜率之積為常數(shù)m(m≥-1,m≠0).
(1)求P點(diǎn)的軌跡方程并討論軌跡是什么曲線?
(2)若m=-
5
9
,P點(diǎn)的軌跡為曲線C,過點(diǎn)Q(2,0)斜率為k1的直線?1與曲線C交于不同的兩點(diǎn)A﹑B,AB中點(diǎn)為R,直線OR(O為坐標(biāo)原點(diǎn))的斜率為k2,求證k1k2為定值;
(3)在(2)的條件下,設(shè)
QB
AQ
,且λ∈[2,3],求?1在y軸上的截距的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為平面內(nèi)一定點(diǎn),設(shè)條件p:動(dòng)點(diǎn)M滿足
OM
=
OA
+λ(
AB
+
AC
),λ∈R;條件q:點(diǎn)M的軌跡通過△ABC的重心.則條件p是條件q的(  )
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶市巫山高級(jí)中學(xué)2011屆高三第一次月考文科數(shù)學(xué)試題 題型:044

已知m∈R,設(shè)條件p:不等式(m2-1)x2+(m+1)x+1≥0對(duì)任意的x∈R恒成立;條件q:關(guān)于x的不等式|x+1|+|x-2|<m的解集為Φ.

(1)分別求出使得p以及q為真的m的取值范圍;

(2)若復(fù)合命題“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知M (-3,0)﹑N (3,0),P為坐標(biāo)平面上的動(dòng)點(diǎn),且直線PM與直線PN的斜率之積為常數(shù)m (mm0),點(diǎn)P的軌跡加上M、N兩點(diǎn)構(gòu)成曲線C.

求曲線C的方程并討論曲線C的形狀;

(2) 若,曲線C過點(diǎn)Q (2,0) 斜率為的直線與曲線C交于不同的兩點(diǎn)AB,AB中點(diǎn)為R,直線OR (O為坐標(biāo)原點(diǎn))的斜率為,求證 為定值;

(3) 在(2)的條件下,設(shè),且,求y軸上的截距的變化范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案