【題目】如圖,在四棱錐中,底面ABCD是菱 形,PA=PB,且側(cè)面PAB⊥平面ABCD,點E是AB的中點.
(1)求證:PE⊥AD;
(2)若CA=CB,求證:平面PEC⊥平面PAB.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)因為PA=PB,點E是棱AB的中點,可知PE⊥AB,因為平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PE平面PAB,推斷出PE⊥平面ABCD,進而根據(jù)線面垂直的性質(zhì)可知PE⊥AD.
(2)因為CA=CB,點E是棱AB的中點,進而可知CE⊥AB,(Ⅱ)可得PE⊥AB,進而判斷出AB⊥平面PEC,根據(jù)面面垂直的判定定理推斷出平面PAB⊥平面PEC.
試題解析:
(1)因為PA=PB,點E是棱AB的中點,所以PE⊥AB,
因為平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB, 平面PAB,所以PE⊥平面ABCD,
因為平面ABCD,所以PE⊥AD.
(2)因為CA=CB,點E是AB的中點,所以CE⊥AB.
由(1)可得PE⊥AB,又因為,所以AB⊥平面PEC,
又因為平面PAB,所以平面PAB⊥平面PEC.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}的通項公式分別是an=(﹣1)n+2016a,bn=2+ ,若an<bn , 對任意n∈N+恒成立,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x0∈R,x02﹣2x0+3≤0的否定是x∈R,x2﹣2x+3>0,命題q:雙曲線 ﹣y2=1的離心率為2,則下列命題中為真命題的是( )
A.p∨q
B.¬p∧q
C.¬p∨q
D.p∧q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱A1B1C1-ABC中,側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點,則下列敘述正確的是( )
A. AC⊥平面ABB1A1 B. CC1與B1E是異面直線
C. A1C1∥B1E D. AE⊥BB1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系內(nèi),已知是圓上一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為和,若圓上存在點,使,其中的坐標(biāo)分別為,則實數(shù)的取值集合為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點, ,且圓心在直線上.
(1)求圓的方程;
(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)= ,f(x)=g(x)﹣ax.
(1)求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實數(shù)a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com