【題目】已知為實(shí)數(shù),用表示不超過的最大整數(shù),例如,,.對于函數(shù),若存在,使得,則稱函數(shù)是“和諧”函數(shù).

(1)判斷函數(shù),是否是“和諧”函數(shù);(只需寫出結(jié)論)

(2)設(shè)函數(shù)是定義在上的周期函數(shù),其最小周期為,若不是“和諧”函數(shù),求的最小值.

(3)若函數(shù)是“和諧”函數(shù),求的取值范圍.

【答案】(1)是“和諧”函數(shù),不是“和諧”函數(shù).(2)最小值為1.(3),

【解析】

1)根據(jù)“和諧”函數(shù)的定義即可判斷,是否是“和諧”函數(shù).

(2)根據(jù)周期函數(shù)的定義,結(jié)合“和諧”函數(shù)的條件,進(jìn)行判斷和證明即可.

3)根據(jù)“和諧”函數(shù)的定義,分別討論時,滿足的條件即可.

(1)由題知:是“和諧”函數(shù),

不是“和諧”函數(shù).

(2)的最小值為.

因?yàn)?/span>是以為最小正周期的周期函數(shù),所以.

假設(shè),則,所以,矛盾.

所以必有

而函數(shù)的周期為1,且顯然不是“和諧”函數(shù),

綜上,的最小值為1.

(3)當(dāng)函數(shù)是“和諧”函數(shù)時,

,則顯然不是“和諧”函數(shù),矛盾.

,則

所以,上單調(diào)遞增,

此時不存在,使得,

同理不存在,使得,

又注意到,即不會出現(xiàn)的情形,

所以此時不是“和諧”函數(shù).

當(dāng)時,設(shè),

所以,所以有,其中,

當(dāng)時,

因?yàn)?/span>,所以,

所以.

當(dāng)時,,

因?yàn)?/span>,所以,

所以.

,綜上,我們可以得到“,”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動圓相外切,與相內(nèi)切.

1)求動圓圓心的軌跡的方程;

2是動圓的半徑最小時的圓,傾斜角為且過點(diǎn)的直線l相切,與軌跡交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中.恒成立,則當(dāng)取得最小值時,的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】算籌是在珠算發(fā)明以前我國獨(dú)創(chuàng)并且有效的計算工具,為我國古代數(shù)學(xué)的發(fā)展做出了很大貢獻(xiàn).在算籌計數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:

表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:

如果把5根算籌以適當(dāng)?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個數(shù)為( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為做好創(chuàng)建國家生態(tài)文明單位的需要,某地甲、乙兩大型企業(yè)決定先從本企業(yè)的所有員工中隨機(jī)抽取8名員工,對自己所在企業(yè)的生態(tài)文明建設(shè)狀況進(jìn)行自我內(nèi)部的評分調(diào)查(滿分100分),被抽取的員工的評分結(jié)果如右表:

1)若分別從甲、乙兩企業(yè)被抽取的8名員工中各抽取1名,在已知兩人中至少一人評分不低于80分的條件下,求抽到的甲企業(yè)員工評分低于80分的概率;

2)用樣本的頻率分布估計總體的概率分布,若從甲企業(yè)的所有員工中,再隨機(jī)抽取4名員工進(jìn)行評分細(xì)節(jié)調(diào)查,記抽取的這4名員工中評分不低于90分的人數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了日至日每天的晝夜溫差與實(shí)驗(yàn)室每天顆種子的發(fā)芽數(shù),得到以下表格

該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1) 求統(tǒng)計數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;

(2) 若選取的是日與日的兩組數(shù)據(jù),請根據(jù)日至日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計算公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)實(shí)施光盤行動以后,某自助啤酒吧也制定了自己的行動計劃,進(jìn)店的每一位客人需預(yù)交50元,啤酒根據(jù)需要自己用量杯量取.結(jié)賬時,剩余酒量不足1升的,按0升計算(如剩余1.7升,記為剩余1).

統(tǒng)計表明飲酒量與人數(shù)有很強(qiáng)的線性相關(guān)關(guān)系,下面是隨機(jī)采集的5組數(shù)據(jù)(其中表示飲酒人數(shù),()表示飲酒量):,,.

(1)求由這5組數(shù)據(jù)得到的關(guān)于的回歸直線方程;

(2)小王約了5位朋友一同來飲酒,小王及朋友用量杯共量取了8升啤酒,這時,酒吧服務(wù)生對小王說,根據(jù)他的經(jīng)驗(yàn),小王和朋友量取的啤酒可能喝不完,可以考慮再邀請一個或兩個朋友一起來飲酒,會更劃算.試問小王是否該接受服務(wù)生的建議.

參考數(shù)據(jù):回歸直線的方程是,其中

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線交于,兩點(diǎn),且的面積為16為坐標(biāo)原點(diǎn)).

1)求的方程;

2)直線經(jīng)過的焦點(diǎn)不與軸垂直,與交于,兩點(diǎn),若線段的垂直平分線與軸交于點(diǎn),證明:為定值.

查看答案和解析>>

同步練習(xí)冊答案