【題目】已知集合A={x|x<﹣2或x>0},B={x|( )x≥3} (Ⅰ)求A∪B
(Ⅱ)若集合C={x|a<x≤a+1},且A∩C=C,求a的取值范圍.
【答案】解:(Ⅰ)∵ ,且函數(shù) 在R上為減函數(shù),
∴x≤﹣1.
∴A∪B={x|x<﹣2或x>0}∪{x|x≤﹣1}={x|x≤﹣1或x>0};
(Ⅱ)∵A∩C=C,∴CA,
∴a+1<﹣2或a≥0,
解得a<﹣3或a≥0.
【解析】(Ⅰ)求解指數(shù)不等式化簡(jiǎn)集合B,再由并集運(yùn)算性質(zhì)求解得答案;(Ⅱ)由已知得CA,進(jìn)一步得到a+1<﹣2或a≥0,求解即可得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解集合的并集運(yùn)算的相關(guān)知識(shí),掌握并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立,以及對(duì)集合的交集運(yùn)算的理解,了解交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=BC=2AC=2. (Ⅰ)若D為AA1中點(diǎn),求證:平面B1CD⊥平面B1C1D;
(Ⅱ)在AA1上是否存在一點(diǎn)D,使得二面角B1﹣CD﹣C1的大小為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】惠城某影院共有100個(gè)座位,票價(jià)不分等次.根據(jù)該影院的經(jīng)營(yíng)經(jīng)驗(yàn),當(dāng)每張標(biāo)價(jià)不超過(guò)10元時(shí),票可全部售出;當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有3張票不能售出.為了獲得更好的收益,需給影院定一個(gè)合適的票價(jià),符合的基本條件是: ①為方便找零和算帳,票價(jià)定為1元的整數(shù)倍;
②影院放映一場(chǎng)電影的成本費(fèi)用支出為575元,票房收入必須高于成本支出.
用x(元)表示每張票價(jià),用y(元)表示該影院放映一場(chǎng)的凈收入(除去成本費(fèi)用支出后的收入).
(Ⅰ)把y表示成x的函數(shù),并求其定義域;
(Ⅱ)試問(wèn)在符合基本條件的前提下,每張票價(jià)定為多少元時(shí),放映一場(chǎng)的凈收入最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】持續(xù)高溫使漳州市多地出現(xiàn)氣象干旱,城市用水緊張,為了宣傳節(jié)約用水,某人準(zhǔn)備在一片扇形區(qū)域(如圖3)上按照?qǐng)D4的方式放置一塊矩形ABCD區(qū)域宣傳節(jié)約用水,其中頂點(diǎn)B,C在半徑ON上,頂點(diǎn)A在半徑OM上,頂點(diǎn)D在 上,∠MON= ,ON=OM=10,m,設(shè)∠DON=θ,矩形ABCD的面積為S.
(Ⅰ)用含θ的式子表示DC,OB的長(zhǎng)‘
(Ⅱ)若此人布置1m2的宣傳區(qū)域需要花費(fèi)40元,試將S表示為θ的函數(shù),并求布置此矩形宣傳欄最多要花費(fèi)多少元錢(qián)?(精確到0.01)
(參考數(shù)據(jù): ≈1.732, ≈1.414)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=2,AD=1,在矩形ABCD的邊CD上隨機(jī)取一點(diǎn)E,記“△AEB的最大邊是AB”為事件M,則P(M)等于( )
A.2﹣
B. ﹣1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實(shí)數(shù)x滿足 . (Ⅰ)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C1:x2+y2=4與圓C2:(x﹣1)2+(y﹣3)2=4,過(guò)動(dòng)點(diǎn)P(a,b)分別作圓C1、圓C2的切線PM,PN,(M,N分別為切點(diǎn)),若|PM|=|PN|,則a2+b2﹣6a﹣4b+13的最小值是( )
A.5
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心為C的圓經(jīng)過(guò)O(0,0))和A(4,0)兩點(diǎn),線段OA的垂直平分線和圓C交于M,N兩點(diǎn),且|MN|=2
(1)求圓C的方程
(2)設(shè)點(diǎn)P在圓C上,試問(wèn)使△POA的面積等于2的點(diǎn)P共有幾個(gè)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且cos2A+cos2B+2sinAsinB=2coc2C. (Ⅰ)求角C的值;
(Ⅱ)若△ABC為銳角三角形,且 ,求a﹣b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com