1.已知點(diǎn)M(m,n)是圓x2+y2=2內(nèi)的一點(diǎn),則該圓上的點(diǎn)到直線mx+ny=2的最大距離和最小距離之和為( 。
A.$2\sqrt{2}$B.$\frac{4}{{\sqrt{{m^2}+{n^2}}}}$C.$\frac{2}{{\sqrt{{m^2}+{n^2}}}}+\sqrt{2}$D.不確定

分析 由題意,圓心到直線的距離d=$\frac{2}{\sqrt{{m}^{2}+{n}^{2}}}$>$\sqrt{2}$,直線與圓相離,即可求出該圓上的點(diǎn)到直線mx+ny=2的最大距離和最小距離之和.

解答 解:由題意,圓心到直線的距離d=$\frac{2}{\sqrt{{m}^{2}+{n}^{2}}}$>$\sqrt{2}$,直線與圓相離,
∴該圓上的點(diǎn)到直線mx+ny=2的最大距離和最小距離之和為$\frac{4}{\sqrt{{m}^{2}+{n}^{2}}}$,
故選B.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.由1,2,3這三個(gè)數(shù)字組成的沒(méi)有重復(fù)數(shù)字的三位自然數(shù)共有(  )
A.6個(gè)B.8個(gè)C.12個(gè)D.15個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖:
(1)如表是年齡的頻數(shù)分布表,求a,b的值;
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)5050a150b
(2)根據(jù)頻率分布直方圖估計(jì)志愿者年齡的平均數(shù)和中位數(shù);
(3)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的分別抽取多少人?
(4)在(3)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一個(gè)焦點(diǎn),拋物線與雙曲線交點(diǎn)為$P({\frac{3}{2},\sqrt{6}})$,求拋物線方程和雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算機(jī)隨機(jī)產(chǎn)生0到9之間取整數(shù)的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,再以三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
807  966  191  925  271  932  812  458  569  683
489  257  394  027  556  488  730  113  537  741
根據(jù)以上數(shù)據(jù),估計(jì)該運(yùn)動(dòng)員三次投籃恰好有兩次命中的概率為( 。
A.0.20B.0.25C.0.30D.0.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}滿足an+1=an-2anan+1,an≠0且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;  
(2)令${b_n}={(-1)^{n+1}}n{a_n}{a_{n+1}}$,求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在區(qū)間(1,7)上任取一個(gè)數(shù),這個(gè)數(shù)在區(qū)間(5,8)上的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.△ABC中,A(0,1),AB邊上的高CD所在直線的方程為x+2y-4=0,AC邊上的中線BE所在直線的方程為2x+y-3=0.
(1)求直線AB的方程,并把它化為一般式;
(2)求直線BC的方程,并把它化為一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列各小題中,p是q的充分不必要條件的是( 。
①p:m<-2或m>6,q:y=x2+mx+m+3有兩個(gè)零點(diǎn);
②$p:\frac{{f({-x})}}{f(x)}=1$,q:y=f(x)是偶函數(shù);
③p:cosα=cosβ,q:tanα=tanβ;
④p:A∩B=A,q:(∁UB)⊆(∁UA)
A.①②B.②③C.③④D.①④

查看答案和解析>>

同步練習(xí)冊(cè)答案