分析:我們將已知中,p與q表示的變量x的范圍x<2與x≤2進行比較,然后根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.
解答:解:∵p:x<2,q:x≤2,
∴P={x|x<2},Q={x|x≤2},
則P?Q
故p是q的充分不必要條件
故答案為:充分不必要條件
點評:判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.