【題目】已知命題p:對數(shù) 有意義;命題q:實數(shù)t滿足不等式 .(Ⅰ)若命題p為真,求實數(shù) 的取值范圍;
(Ⅱ)若命題p是命題q的充分不必要條件,求實數(shù) 的取值范圍.
【答案】解:(Ⅰ)由對數(shù)式有意義得-2t2+7t-5>0,解得1<t< ,即實數(shù)t的取值范圍是 .
(Ⅱ)∵命題p是命題q的充分不必要條件,
∴1<t< 是不等式t2-(a+3)t+(a+2)<0解集的真子集.
法一:因為方程t2-(a+3)t+(a+2)=0兩根為1,a+2,故只需a+2> ,
解得a> .
即a的取值范圍是 .
法二:令f(t)=t2-(a+3)t+(a+2),因
f(1)=0,故只需f <0,解得a> .
即a的取值范圍是 .
【解析】(1)根據(jù)題意得出2t2-7t+5<0求解即可.
(2)根據(jù)充分必要條件的定義可得出1<t<a+2,<a+2,a≠1,運用即可.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()的離心率為,橢圓與軸交于兩點,且.
(1)求橢圓的方程;
(2)設(shè)點是橢圓上的一個動點,且點在軸的右側(cè),直線與直線交于兩點,若以為直徑的圓與軸交于,求點橫坐標的取值范圍及的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)集合A={x|log2(x+1)<2},B={y|y= },則(RA)∩B=( )
A.(0,3)
B.[0,4]
C.[3,4)
D.(﹣1,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC=2,∠ABC=90°,DA=DC= .現(xiàn)沿對角線AC折起,使得平面DAC⊥平面ABC,此時點A,B,C,D在同一個球面上,則該球的體積是( )
A.
B.
C.
D.12π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}為公差不為0的等差數(shù)列,滿足a1=5,且a2 , a9 , a30成等比數(shù)列.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足 ﹣ =an(n∈N*),且b1= ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)用五點法畫出它在一個周期內(nèi)的閉區(qū)間上的圖象;
(2)指出f(x)的周期、振幅、初相、對稱軸;
(3)此函數(shù)圖象由y=sinx的圖象怎樣變換得到?(注:y軸上每一豎格長為1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面的 列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | |||
合計 |
(參考公式 ,其中 .)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè) 表示三條不同的直線, 表示三個不同的平面,給出下列三個命題:①若 ,則 ;②若 , 是 在 內(nèi)的射影, ,則 ;③若 則 . 其中真命題的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com