當(dāng)n為正整數(shù)時,比較(n+1)n與nn+1的大小,下列判斷正確的是

[  ]
A.

對任何正整數(shù)都有(n+1)n>nn+1

B.

當(dāng)n≥3時,nn+1>(n+1)n

C.

當(dāng)n≥4時,nn+1>(n+1)n

D.

當(dāng)n≥5時,nn+1>(n+1)n

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=a,a2=-a(a>0),且{an}從第二項起是公差為6的等差數(shù)列,Sn是{an}的前n項和.
(1)當(dāng)n≥2時,用a與n表示an與Sn
(2)若在S6與S7兩項中至少有一項是Sn的最小值,試求a的取值范圍;
(3)若a為正整數(shù),在(2)的條件下,設(shè)Sn取S6為最小值的概率是p1,Sn取S7為最小值的概率是p2,比較p1與p2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列{an}滿足a1=a,a2=-a(a>0),且{an}從第二項起是公差為6的等差數(shù)列,Sn是{an}的前n項和.
(1)當(dāng)n≥2時,用a與n表示an與Sn
(2)若在S6與S7兩項中至少有一項是Sn的最小值,試求a的取值范圍;
(3)若a為正整數(shù),在(2)的條件下,設(shè)Sn取S6為最小值的概率是p1,Sn取S7為最小值的概率是p2,比較p1與p2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市嘉定區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

數(shù)列{an}滿足a1=a,a2=-a(a>0),且{an}從第二項起是公差為6的等差數(shù)列,Sn是{an}的前n項和.
(1)當(dāng)n≥2時,用a與n表示an與Sn
(2)若在S6與S7兩項中至少有一項是Sn的最小值,試求a的取值范圍;
(3)若a為正整數(shù),在(2)的條件下,設(shè)Sn取S6為最小值的概率是p1,Sn取S7為最小值的概率是p2,比較p1與p2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪復(fù)習(xí)鞏固與練習(xí):等差數(shù)列(解析版) 題型:解答題

數(shù)列{an}滿足a1=a,a2=-a(a>0),且{an}從第二項起是公差為6的等差數(shù)列,Sn是{an}的前n項和.
(1)當(dāng)n≥2時,用a與n表示an與Sn
(2)若在S6與S7兩項中至少有一項是Sn的最小值,試求a的取值范圍;
(3)若a為正整數(shù),在(2)的條件下,設(shè)Sn取S6為最小值的概率是p1,Sn取S7為最小值的概率是p2,比較p1與p2的大。

查看答案和解析>>

同步練習(xí)冊答案