【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.

【答案】
(1)解:橢圓C的參數(shù)方程為 ,消去參數(shù),可得普通方程為 =1,極坐標(biāo)方程為 ;
(2)解:設(shè)M(x,y)為橢圓C上任意一點(diǎn),則x+2y=3cosθ+4sinθ=5sin(θ+α),

∴x+2y的取值范圍是[﹣5,5]


【解析】(1)橢圓C的參數(shù)方程為 ,消去參數(shù),可得普通方程,即可求橢圓C的極坐標(biāo)方程;(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),則x+2y=3cosθ+4sinθ=5sin(θ+α),即可求x+2y的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)滿足如下四個(gè)條件:

定義域?yàn)?/span>;

;

③當(dāng)時(shí),;

④對任意滿足.

根據(jù)上述條件,求解下列問題:

的值.

應(yīng)用函數(shù)單調(diào)性的定義判斷并證明的單調(diào)性.

求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)列{An}、{Bn}分別在銳角兩邊(不在銳角頂點(diǎn)),且|AnAn+1|=|An+1An+2|,An≠An+2 , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N*(P≠Q(mào)表示點(diǎn)P與Q不重合),若dn=|AnBn|,Sn為△AnBnBn+1的面積,則(

A.{dn}是等差數(shù)列
B.{Sn}是等差數(shù)列
C.{d }是等差數(shù)列
D.{S }是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,且a≠1,則雙曲線C1 ﹣y2=1與雙曲線C2 ﹣x2=1的(
A.焦點(diǎn)相同
B.頂點(diǎn)相同
C.漸近線相同
D.離心率相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 的定義域是R,對于任意實(shí)數(shù) ,恒有,且當(dāng) 時(shí), 。

1求證: ,且當(dāng) 時(shí),有

2判斷 R上的單調(diào)性;

3設(shè)集合AB,若A∩B,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓右焦點(diǎn),離心率為,過作兩條互相垂直的弦,設(shè)中點(diǎn)分別為.

(1)求橢圓的方程;

(2) 證明:直線必過定點(diǎn),并求出此定點(diǎn)坐標(biāo);

(3) 若弦的斜率均存在,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)= sin2x﹣ cos2x+1的圖象向左平移 個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,則下列關(guān)予函數(shù)y=g(x)的說法錯(cuò)誤的是(
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對稱軸為直線x=
C. g(x)dx=
D.函數(shù)y=g(x)在區(qū)間[ ]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某一等差數(shù)列的首項(xiàng)為,公差為展開式中的常數(shù)項(xiàng),其中除以19的余數(shù),則此數(shù)列前多少項(xiàng)的和最大?并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為提高員工的綜合素質(zhì),聘請專業(yè)機(jī)構(gòu)對員工進(jìn)行專業(yè)技術(shù)培訓(xùn),其中培訓(xùn)機(jī)構(gòu)費(fèi)用成本為12000元.公司每位員工的培訓(xùn)費(fèi)用按以下方式與該機(jī)構(gòu)結(jié)算:若公司參加培訓(xùn)的員工人數(shù)不超過30人時(shí),每人的培訓(xùn)費(fèi)用為850元;若公司參加培訓(xùn)的員工人數(shù)多于30人,則給予優(yōu)惠:每多一人,培訓(xùn)費(fèi)減少10元.已知該公司最多有60位員工可參加培訓(xùn),設(shè)參加培訓(xùn)的員工人數(shù)為人,每位員工的培訓(xùn)費(fèi)為元,培訓(xùn)機(jī)構(gòu)的利潤為元.

(1)寫出 之間的函數(shù)關(guān)系式;

(2)當(dāng)公司參加培訓(xùn)的員工為多少人時(shí),培訓(xùn)機(jī)構(gòu)可獲得最大利潤?并求最大利潤.

查看答案和解析>>

同步練習(xí)冊答案