【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex .
(1)當a=2時,求函數(shù)f(x)的最值;
(2)當a≠0時,過原點分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a< .
【答案】
(1)解:當a=2時,f(x)=lnx﹣2(x﹣1)的定義域為(0,+∞),
f′(x)= ﹣2= ;
當x∈(0, )時,f′(x)>0,當x∈( ,+∞)時,f′(x)<0,
即函數(shù)f(x)在(0, )上單調遞增,在( ,+∞)上單調遞減.
所以f(x)max=f( )=1﹣ln2,沒有最小值
(2)解:證明:設切線l2的方程為y=k2x,切點為(x2,y2),則y2= ,
k2=g′(x2)= = ,
所以x2=1,y2=e,則k2=e.
由題意知,切線l1的斜率為k1= = ,l1的方程為y= x;
設l1與曲線y=f(x)的切點為(x1,y1),則k1=f′(x1)= ﹣a= = ,
所以y1= =1﹣ax1,a= ﹣ .
又因為y1=lnx1﹣a(x1﹣1),消去y1和a后,
整理得lnx1﹣1+ ﹣ =0.
令m(x)=lnx﹣1+ ﹣ =0,
則m′(x)= ﹣ = ,m(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增.
若x1∈(0,1),因為m( )=﹣2+e﹣ >0,m(1)=﹣ <0,所以x1∈( ,1),
而a= ﹣ 在x1∈( ,1)上單調遞減,所以 <a< .
若x1∈(1,+∞),因為m(x)在(1,+∞)上單調遞增,且m(e)=0,則x1=e,
所以a= ﹣ =0(舍去).
綜上可知, <a<
【解析】(1)當a=2時,f(x)=lnx﹣2(x﹣1)的定義域為(0,+∞),再利用導數(shù)求函數(shù)的單調區(qū)間,從而求解函數(shù)的最值;(2)設切線l2的方程為y=k2x,從而由導數(shù)及斜率公式可求得切點為(1,e),k2=e;再設l1的方程為y= x;設l1與曲線y=f(x)的切點為(x1 , y1),從而可得y1= =1﹣ax1 , a= ﹣ ;結合y1=lnx1﹣a(x1﹣1)可得lnx1﹣1+ ﹣ =0,再令m(x)=lnx﹣1+ ﹣ ,從而求導確定函數(shù)的單調性,從而確定 <a< ,問題得證.
【考點精析】本題主要考查了函數(shù)的最大(小)值與導數(shù)的相關知識點,需要掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】甲,乙兩人進行圍棋比賽,共比賽2n(n∈N+)局,根據(jù)以往比賽勝負的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局數(shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,以原點O為頂點,以y軸為對稱軸的拋物線E的焦點為F(0,1),點M是直線l:y=m(m<0)上任意一點,過點M引拋物線E的兩條切線分別交x軸于點S,T,切點分別為B,A.
(1)求拋物線E的方程;
(2)求證:點S,T在以FM為直徑的圓上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的四棱錐P﹣ABCD中,四邊形ABCD為正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分別為PD,CD,AD的中點, =3 .
(1)證明:PB∥平面FMN;
(2)若PA=AB,求二面角E﹣AC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,A,B,C的對邊分別是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求證:△ABC為等腰三角形
(2)若△ABC的面積為8 .且sinB= ,求BC邊上的中線長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓 =1(a>b>0)的左、右頂點分別為A,B,焦距為2 ,直線x=﹣a與y=b交于點D,且|BD|=3 ,過點B作直線l交直線x=﹣a于點M,交橢圓于另一點P.
(1)求橢圓的方程;
(2)證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四種說法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經過點(2, ),則f(4)的值等于 ;
④已知向量 =(3,﹣4), =(2,1),則向量 在向量 方向上的投影是 .
說法錯誤的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖4所示,其中成績分組區(qū)間是: ,,,,.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數(shù)段的人數(shù)與數(shù)學成績相應分數(shù)段的人數(shù)之比如下表所示,求數(shù)學成績在之外的人數(shù).
分數(shù)段 |
| |||
X:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com