【題目】如圖所示,已知橢圓C1+=1,C2+=1(a>b>0)有相同的離心率,F(xiàn)(﹣ , 0)為橢圓C2的左焦點(diǎn),過點(diǎn)F的直線l與C1、C2依次交于A、C、D、B四點(diǎn).
(1)求橢圓C2的方程;
(2)求證:無論直線l的傾斜角如何變化恒有|AC|=|DB|

【答案】(1)解:橢圓C1+=1的離心率為=,
對(duì)于C2+=1(a>b>0)的c=,由條件得,=,則a=2,b=1,
則橢圓C2的方程為:+y2=1;
(2)證明:當(dāng)直線l垂直于x軸時(shí),可得A(﹣,﹣),B(﹣),C(﹣,﹣),D(﹣,
即有|AC|=|BD|;
當(dāng)l不垂直于x軸時(shí),設(shè)直線l:y=k(x),
消去y,得(1+4k2)x2+8k2x+12k2﹣10=0,
消去y,得(1+4k2)x2+8k2x+12k2﹣4=0,
設(shè)A(x1 , y1),B(x2 , y2),C(x3 , y3),D(x4 , y4),
則x1+x2=x3+x4=﹣,即有AB,CD的中點(diǎn)重合,則有|AC|=|BD|.
故無論直線l的傾斜角如何變化恒有|AC|=|DB|
【解析】(1)求得橢圓C1的離心率,再由離心率公式和a,b,c的關(guān)系,即可得到橢圓橢圓C2的方程;
(2)當(dāng)直線l垂直于x軸時(shí),可得A,B,C,D的坐標(biāo),計(jì)算即可得到|AC|=|BD|;當(dāng)l不垂直于x軸時(shí),設(shè)直線l:y=k(x),聯(lián)立橢圓方程,消去y,得到x的方程,運(yùn)用韋達(dá)定理,再由中點(diǎn)坐標(biāo)即可得到|AC|=|BD|;
(3)若|AC|=1,由(2)得,|AB|=|CD|+2,當(dāng)直線l垂直于x軸時(shí),不滿足題意;當(dāng)l不垂直于x軸時(shí),設(shè)直線l:y=k(x),由(2)運(yùn)用弦長(zhǎng)公式,化簡(jiǎn)整理,得到8k4﹣2k2﹣1=0,解方程即可得到.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, 分別為內(nèi)角的對(duì)邊,且

(1)求角的大;

(2)若的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生喜歡校內(nèi)、校外開展活動(dòng)的情況,某中學(xué)一課外活動(dòng)小組在學(xué)校高一年級(jí)進(jìn)行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學(xué)生,低于60分的稱為類學(xué)生.

(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為性別與是否為類學(xué)生有關(guān)系?

合計(jì)

110

50

合計(jì)

(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為(萬元),它們與投入資金(萬元)的關(guān)系有如下公式:,,今將200萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于25萬元.

(Ⅰ)設(shè)對(duì)乙種產(chǎn)品投入資金(萬元),求總利潤(rùn)(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;

(Ⅱ)如何分配投入資金,才能使總利潤(rùn)最大,并求出最大總利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,三邊a,b,c所對(duì)的角分別為A,B,C,設(shè)函數(shù)f(x)=sin2x+cos2x,且f()=2.
(1)若acosB+bcosA=csinC,求角B的大;
(2)記g(λ)=||,若||=||=3,試求g(λ)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列

滿足:1(k=1,2,…,n-1).

對(duì)任意i,j,都存在s,t,使得,其中i,j,s,t{1,2,…,n}且兩兩不相等.

(I)若m=2,寫出下列三個(gè)數(shù)列中所有符合題目條件的數(shù)列的序號(hào);

1,1,1,2,2,2; 1,1,1,1,2,2,2,2; 1,1,1,1,1,2,2,2,2

(II)記.若m=3,求S的最小值;

(III)若m=2018,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(1-2x)(x2-2).

(1)求f(x)的單調(diào)區(qū)間和極值;

(2)若直線y=4x+b是函數(shù)y=f(x)圖象的一條切線,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:

①若,滿足,則的最大值為4;

②若,則函數(shù)的最小值為3;

③若,滿足,則的最大值為;

④若,滿足,則的最小值為2;

⑤函數(shù)的最小值為9.

正確的________.(把你認(rèn)為正確的序號(hào)全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=ax4lnx+bx4﹣cx0)在x=1處取得極值﹣3﹣c,其中ab,c為常數(shù).

1)試確定a,b的值;

2)討論函數(shù)fx)的單調(diào)區(qū)間;

3)若對(duì)任意x0,不等式fx≥﹣2c2恒成立,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案