精英家教網 > 高中數學 > 題目詳情
(2012•東城區(qū)一模)拋物線y2=x的準線方程為
x=-
1
4
x=-
1
4
;經過此拋物線的焦點和點M(1,1),且與準線相切的圓共有
2
2
個.
分析:根據拋物線方程y2=x,不難得到它的焦點坐標和準線方程.根據平面幾何性質,滿足條件圓的圓心C既在線段FM垂直平分線上,又在拋物線上.由此確定FM垂直平分線與拋物線交點的個數,即得滿足條件的圓的個數.
解答:解:∵拋物線方程為y2=x,
∴拋物線開口向右,2p=1,得
p
2
=
1
4

因此,拋物線的準線方程為x=-
1
4
,焦點坐標為F(
1
4
,0)
設過拋物線的焦點F和點M(1,1)的圓的圓心為C
∵CF=CM,∴點C在線段FM垂直平分線上
又∵圓C與與拋物線準線相切
∴點C到準線的距離等于圓的半徑CF,結合拋物線的定義,可得點C是拋物線上的點.
由以上的分析可得,點C是拋物線與FM垂直平分線的焦點
∵FM垂直平分線為:y=-
3
4
x+1,與拋物線y2=x有兩個不同的交點
∴存在兩個不同的C點,使圓C與準線相切,即過F、M兩點且與準線相切的圓共有2個
故答案為:2
點評:本題給出經過定點(1,1)和拋物線焦點的圓與拋物線準線相切,求滿足條件圓的個數.著重考查了拋物線的標準方程和簡單幾何性質,直線與圓的位置關系等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•東城區(qū)一模)已知sin(45°-α)=
2
10
,且0°<α<90°,則cosα=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)一模)已知x,y,z∈R,若-1,x,y,z,-3成等比數列,則xyz的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)一模)已知函數f(x)=(x-a)(x-b)(其中a>b),若f(x)的圖象如圖所示,則函數g(x)=ax+b的圖象大致為.( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)一模)在如圖所示的莖葉圖中,乙組數據的中位數是
84
84
;若從甲、乙兩組數據中分別去掉一個最大數和一個最小數后,兩組數據的平均數中較大的一組是
組.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)一模)如圖1,在邊長為3的正三角形ABC中,E,F,P分別為AB,AC,BC上的點,且滿足AE=FC=CP=1.將△AEF沿EF折起到△A1EF的位置,使平面A1EF⊥平面EFB,連接A1B,A1P.(如圖2)
(Ⅰ)若Q為A1B中點,求證:PQ∥平面A1EF;
(Ⅱ)求證:A1E⊥EP.

查看答案和解析>>

同步練習冊答案