【題目】在平面直角坐標系xOy中,拋物線C的頂點是原點O,以x軸為對稱軸,且經(jīng)過點P(1,2).
(1)求拋物線C的方程;
設(shè)點A,B在拋物線C上,直線PA,PB分別與y軸交于點M,N,|PM|=|PN|.求直線AB的斜率.
【答案】(1) (2)-1
【解析】試題分析:(1)先設(shè)拋物線標準方程,代入點坐標可得拋物線方程(2)由|PM|=|PN|得直線PA與PB的傾斜角互補,設(shè)直線PA斜率,與拋物線方程聯(lián)立解得A,同理可得B,最后利用斜率公式求AB斜率
試題解析:解:(Ⅰ)根據(jù)題意,設(shè)拋物線C的方程為
由拋物線C經(jīng)過點,
得,
所以拋物線C的方程為
(Ⅱ)因為,
所以,
所以,
所以直線PA與PB的傾斜角互補,
所以
根據(jù)題意,直線AP的斜率存在,設(shè)直線AP的方程為:,
將其代入拋物線C的方程,整理得
設(shè),則,,
所以
以-k替換點A坐標中的k,得
所以 ,
所以直線AB的斜率為-1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(I)若曲線 存在斜率為-1的切線,求實數(shù)a的取值范圍;
(II)求 的單調(diào)區(qū)間;
(III)設(shè)函數(shù) ,求證:當(dāng) 時, 在 上存在極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校隨機調(diào)查了80位學(xué)生,以研究學(xué)生中愛好羽毛球運動與性別的關(guān)系,得到下面的數(shù)據(jù)表:
愛好 | 不愛好 | 合計 | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合計 | 30 | 50 | 80 |
(1)將此樣本的頻率估計為總體的概率,隨機調(diào)查了本校的3名學(xué)生.設(shè)這3人中愛好羽毛球運動的人數(shù)為,求的分布列和期望值;
(2)根據(jù)表中數(shù)據(jù),能否有充分證據(jù)判定愛好羽毛球運動與性別有關(guān)聯(lián)?若有,有多大把握?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱柱中, 為正方形, 為菱形, .
(1)求證:平面⊥平面;
(2)若是中點,∠是二面角的平面角,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在上存在唯一的滿足, 那么稱函數(shù)是上的“單值函數(shù)”.已知函數(shù)是上的“單值函數(shù)”,當(dāng)實數(shù)取最小值時,函數(shù)在上恰好有兩點零點,則實數(shù)的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某生態(tài)園將一塊三角形地的一角開辟為水果園,已知角為, 的長度均大于200米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.
(1)若圍墻、總長度為200米,如何可使得三角形地塊面積最大?
(2)已知竹籬笆長為米, 段圍墻高1米, 段圍墻高2米,造價均為每平方米100元,求圍墻總造價的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com