【題目】設(shè)數(shù)列的首項為,前項和為,若對任意的,均有是常數(shù)且)成立,則稱數(shù)列為“數(shù)列”.

(1)若數(shù)列為“數(shù)列”,求數(shù)列的通項公式;

(2)是否存在數(shù)列既是“數(shù)列”,也是“數(shù)列”?若存在,求出符合條件的數(shù)列的通項公式及對應(yīng)的的值;若不存在,請說明理由;

(3)若數(shù)列為“數(shù)列”, ,設(shè),證明: .

【答案】(1);(2)不存在;(3)證明見解析.

【解析】試題分析

1)由題意得,,兩式相減可得,在此基礎(chǔ)上可得數(shù)列為等比數(shù)列,從而可得通項公式.(2)利用反證法可得不存在這樣的數(shù)列既是“數(shù)列”,也是“數(shù)列”.(3)由數(shù)列為“數(shù)列”,可得到對任意正整數(shù)恒成立,于是可得,然后根據(jù)錯位相減法求得 ,故得,故,即即結(jié)論成立

試題解析:

(1)因為數(shù)列為“數(shù)列”,

,

兩式相減得: ,

時, ,

所以

對任意的恒成立,即(常數(shù)),

故數(shù)列為等比數(shù)列,其通項公式為.

2)假設(shè)存在這樣的數(shù)列,則有,故有

兩式相減得: ,

故有,

同理由是“數(shù)列”可得

所以對任意恒成立

所以,

,

,

,

兩者矛盾,故不存在這樣的數(shù)列既是“數(shù)列”,也是“數(shù)列”.

3)因為數(shù)列為“數(shù)列”,

所以,

所以,

故有, ,

時,

,滿足,

所以對任意正整數(shù)恒成立,數(shù)列的前幾項為:

,

所以,

兩式相減得 ,

顯然,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)曲線在點處的切線平行于軸,求實數(shù)的值;

(2)記

(i)討論的單調(diào)性;

(ii)若, 上的最小值,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A. 設(shè)隨機變量,則

B. 線性回歸直線不一定過樣本中心點

C. 若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1

D. 先把高三年級的2000名學(xué)生編號:1到2000,再從編號為1到50的50名學(xué)生中隨機抽取1名學(xué)生,其編號為,然后抽取編號為 , ,……的學(xué)生,這樣的抽樣方法是分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:

一次購物款(單位:元)

顧客人數(shù)

統(tǒng)計結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀念品.

(Ⅰ)試確定 的值,并估計每日應(yīng)準(zhǔn)備紀念品的數(shù)量;

(Ⅱ)現(xiàn)有人前去該商場購物,求獲得紀念品的數(shù)量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間幾何體中, 均為邊長為的等邊三角形, 為腰長為的等腰三角形,平面平面,平面平面.

試在平面內(nèi)作一條直線,使得直線上任意一點的連線均與平面平行,并給出詳細證明;

求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家電公司根據(jù)銷售區(qū)域?qū)N售員分成兩組.2017年年初,公司根據(jù)銷售員的銷售業(yè)績分發(fā)年終獎,銷售員的銷售額(單位:十萬元)在區(qū)間內(nèi)對應(yīng)的年終獎分別為2萬元,2.5萬元,3萬元,3.5萬元.已知200名銷售員的年銷售額都在區(qū)間內(nèi),將這些數(shù)據(jù)分成4組: ,得到如下兩個頻率分布直方圖:

以上面數(shù)據(jù)的頻率作為概率,分別從組與組的銷售員中隨機選取1位,記分別表示 組與組被選取的銷售員獲得的年終獎.

(1)求的分布列及數(shù)學(xué)期;

(2)試問組與組哪個組銷售員獲得的年終獎的平均值更高?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,且曲線處的切線方程為.

(1)求, 的值;

(2)求函數(shù)上的最小值;

(3)證明:當(dāng)時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年是內(nèi)蒙古自治區(qū)成立70周年.某市旅游文化局為了慶祝內(nèi)蒙古自治區(qū)成立70周年,舉辦了第十三屆成吉思汗旅游文化周.為了了解該市關(guān)注“旅游文化周”居民的年齡段分布,隨機抽取了名年齡在且關(guān)注“旅游文化周”的居民進行調(diào)查,所得結(jié)果統(tǒng)計為如圖所示的頻率分布直方圖.

年齡

單人促銷價格(單位:元)

(Ⅰ)根據(jù)頻率分布直方圖,估計該市被抽取市民的年齡的平均數(shù);

(Ⅱ)某旅行社針對“旅游文化周”開展不同年齡段的旅游促銷活動,各年齡段的促銷價位如表所示.已知該旅行社的運營成本為每人元,以頻率分布直方圖中各年齡段的頻率分布作為參團旅客的年齡頻率分布,試通過計算確定該旅行社的這一活動是否盈利;

(Ⅲ)若按照分層抽樣的方法從年齡在, 的居民中抽取人進行旅游知識推廣,并在知識推廣后再抽取人進行反饋,求進行反饋的居民中至少有人的年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的導(dǎo)函數(shù),且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),,若不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案