【題目】集合A={x|-1≤x≤2},B={x|x<1},則AB等于(  )

A. {x|x<1} B. {x|-1≤x≤2}

C. {x|-1≤x≤1} D. {x|-1≤x<1}

【答案】D

【解析】∵集合A={x|-1≤x2},
B{x|x<1},
∴A∩B={x|-1≤x2}∩{x|x<1}={x|1≤x<1}
故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)已知單調(diào)遞增區(qū)間;

(2)是否存在實(shí)數(shù),使的最小值為0?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個(gè)頂點(diǎn),,,其外接圓為.

(1)求的面積;

(2)若直線過點(diǎn),且被截得的弦長為2,求直線的方程;

(3)對于線段上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),,使得點(diǎn)的線段的中點(diǎn),求的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水尤為突出.某市為了制定合理的節(jié)水方案,從該市隨機(jī)調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.

1)求圖中的值并估計(jì)樣本的眾數(shù);

2)設(shè)該市計(jì)劃對居民生活用水試行階梯水價(jià),即每位居民用水量不超過噸的按2元/噸收費(fèi),超過噸不超過2噸的部分按4元/噸收費(fèi),超過2噸的部分按照10元/噸收費(fèi).

用樣本估計(jì)總體,為使75%以上居民在該月的用水價(jià)格不超過4元/噸,至少定為多少?

假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)時(shí),估計(jì)該市居民該月的人均水費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水尤為突出.某市為了制定合理的節(jié)水方案,從該市隨機(jī)調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.

(1)求圖中的值;

(2)設(shè)該市有500萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由:

(3)估計(jì)本市居民的月用水量平均數(shù)同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值代表.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是

A.自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系

B.在線性回歸分析中,相關(guān)系數(shù)r的值越大,變量間的相關(guān)性越強(qiáng)

C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.在回歸分析中,為0.98的模型比為0.80的模型擬合的效果好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的一系列對應(yīng)值如表:

(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個(gè)解析式;

(2)根據(jù)(1)的結(jié)果:

當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍;

,是銳角三角形的兩個(gè)內(nèi)角,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)字12,34,5組成的無重復(fù)數(shù)字的四位偶數(shù)的個(gè)數(shù)為 ( )

A. 8 B. 24 C. 48 D. 120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列算法語句,當(dāng)輸入x60時(shí),輸出y的值為

INPUT x

IF x<=50 THEN

y=0.5*x

ELSE

y=25+0.6*(x–50)

END IF

PRINT y

END

A. 25 B. 30 C. 31 D. 61

查看答案和解析>>

同步練習(xí)冊答案