【題目】某市據(jù)實際情況主要采取以下四種扶貧方式:第一,以工代賑方式,指政府投資建設基礎設施工程,組織貧困地區(qū)群眾參加工程建設并獲得勞務報酬,第二,整村推進方式指以貧困村為具體幫扶對象,幫扶對口到村,資金安排到村,扶貧效益到戶,第三,科技扶貧方式,指組織科技人員深入貧困鄉(xiāng)村實地指導、技術培訓等傳授科技知識,第四,移民搬遷方式,指對目前極少數(shù)居住在生存條件惡劣、自然資源貧乏地區(qū)的特困人口,實行自愿移民,該市為了2020年更好的完成精準扶貧各項任務,2020年初在全市貧困戶(分一般貧困戶和五特戶兩類)中隨機抽取了5000戶就目前的主要四種扶貧方式行了問卷調查,支持每種扶貧方式的結果如表:

調查的貧困戶

支持以工代賑戶數(shù)

支持整村推進戶數(shù)

支持科技扶貧戶數(shù)

支持移民搬遷戶數(shù)

一般貧困戶

1200

1600

200

五特戶(五保戶和特困戶)

100

100

已知在被調查的5000戶中隨機抽取一戶支持整村推進的概率為0.36.

(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調查的貧困戶中抽取50戶進行深入訪談,問應在支持科技扶貧戶數(shù)中抽取多少戶?

(Ⅱ)雖然五特戶在全市的貧困戶所占比例不大,但本次調查要有意義,其中這次調查的五特戶戶數(shù)不能低于被調查總戶數(shù)的9.2%,已知,求本次調查有意義的概率是多少?

【答案】(Ⅰ)16戶(Ⅱ)

【解析】

5000戶中隨機抽取一戶支持整村推進的概率為0.36.可求得支持整村推進的戶數(shù)1800,可知,進而求得,即可求得結果;

)因為,,,列出所有符合的結果共13,由于五特戶戶數(shù)不能低于被調查總戶數(shù)的9.2%,,,有意義,找到符合題意的結果即可求出概率.

解:(支持整村推進戶數(shù)為.

.

應在支持科技扶貧戶數(shù)中抽取的戶數(shù)為:(戶).

五特戶戶數(shù)不能低于被調查總戶數(shù)的9.2%

有意義,又,,情況列舉如下:

13種情況.

本次調查有意義的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四樓錐中,,,.

1)求的長.

2)求直線與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:函數(shù)上單調遞增;命題:函數(shù)上單調遞減.

(Ⅰ)若是真命題,求實數(shù)的取值范圍;

(Ⅱ)若為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為的正方體中,是面對角線上兩個不同的動點.以下四個命題:①存在兩點,使;②存在兩點,使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個面上的正投影的面積的和為定值.其中為真命題的是____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求的單調區(qū)間;

2)若函數(shù)在區(qū)間上無零點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知、是橢圓上關于軸對稱的兩點,的左焦點,.

1)求橢圓的標準方程;

2)斜率為的直線過點,和橢圓相交于、兩點,.坐標是,設的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著手機的發(fā)展,“微信”逐漸成為人們交流的一種形式.某機構對“使用微信交流”的態(tài)度進行調查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.

年齡

(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關;

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(2)若從年齡在[55,65)的被調查人中隨機選取2人進行追蹤調查,求2人中至少有1人不贊成“使用微信交流”的概率.

參考數(shù)據(jù):

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2,其中nabcd.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調性;

2)設,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求出函數(shù)的單調區(qū)間及最大值;

2)若,求函數(shù)上的最大值的表達式.

查看答案和解析>>

同步練習冊答案