【題目】已知函數(shù)

(1)證明:當時, ;

(2)若當時, ,求實數(shù)的取值范圍.

【答案】1見解析;(2)見解析.

【解析】試題分析:(1先求導數(shù),再求導函數(shù)零點,列表分析函數(shù)單調(diào)性變化規(guī)律,確定函數(shù)最小值為,即證得結(jié)論2先討論分母正負,化分式為整式,再求導數(shù),由于,所以必須為增函數(shù),根據(jù)單調(diào)性討論可得實數(shù)的取值范圍.

試題解析:1)當時, ,

,令,解得

時, ,上是減函數(shù);

時, 上是增函數(shù);

處取得最小值,即.

(2)由已知,∴.

i)當時,若,則,此時,不符合題設條件;

(ii)當時,若,

,則

.

①當時,由(1)知, ,即,

它等價于

此時上是增函數(shù),

,即.

②當時,由(1)知,

時, ,此時上是減函數(shù),

,即,不符合題設條件.

綜上: .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集為M.

(1)求M;

(2)當a2b2M時,證明: |ab|≤|ab+3|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為進行“陽光運動一小時”活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地。如圖,點上,點上,且點在斜邊上,已知米,米,,設矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正的常數(shù)).

(1)試用表示,并指出如何設計矩形的長和寬,才能使得矩形的面積最大,且求出的最大值;

(2)求總造價關于面積的函數(shù),說明如何選取,使總造價最低(不要求求出最低造價).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于的不等式的解集為,的解集為.

1)試求;

2)是否存在實數(shù),使得?若存在,求的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.

(1)求拋物線方程;

(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直平行六面體中,為棱上任意一點,為底面(除外)上一點,已知在底面上的射影為,若再增加一個條件,就能得到,現(xiàn)給出以下條件:

;②上;③平面;④直線在平面的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認為正確的都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)處的切線與直線平行.

1)求實數(shù);

2)求函數(shù)的單調(diào)區(qū)間;

3)設,, 恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.

(Ⅰ)求所取3張卡片上的數(shù)字完全相同的概率;

表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學期望

(注:若三個數(shù)滿足,則稱為這三個數(shù)的中位數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題共14分)如圖,在三棱錐中, 底面

,點, 分別在棱上,且)求證: 平面;()當的中點時,求與平面所成的角的大;()是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

同步練習冊答案