函數(shù)f(x)=lg(3-2x-x2)的定義域?yàn)镻,值域?yàn)镼,則P∩Q=( 。
A、(-∞,lg4]
B、(-3,1)
C、(-3,lg4]
D、(-1,lg4)
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:求出函數(shù)的定義域與值域確定出P與Q,求出兩集合的交集即可.
解答: 解:函數(shù)f(x)=lg(3-2x-x2),
得到3-2x-x2>0,即x2+2x-3<0,
解得:-3<x<1,即P=(-3,1);
∵3-2x-x2=-(x+1)2+4,
∴0<x≤4,即Q=(-∞,lg4],
則P∩Q=(-3,lg4].
故選:C.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(
1
3
 x2+2x-3,則f(x)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lg(2x-3)的定義域是(  )
A、[
3
2
,+∞)
B、(-∞,
3
2
C、(
3
2
,+∞)
D、(-∞,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+1,x≤0
log2x,x>0
,則下列關(guān)于函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)的判斷正確的是( 。
A、無(wú)論a為何值,均有2個(gè)零點(diǎn)
B、無(wú)論a為何值,均有4個(gè)零點(diǎn)
C、當(dāng)a>0時(shí)有4個(gè)零點(diǎn),當(dāng)a<0時(shí)有1個(gè)零點(diǎn)
D、當(dāng)a>0時(shí)有3個(gè)零點(diǎn),當(dāng)a<0時(shí)2個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x+x的零點(diǎn)所在的區(qū)間為( 。
A、(-2,-1)
B、(-1,0)
C、(0,1)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=|lgx|,且0<a<b<c時(shí),有f(a)>f(c)>f(b),則( 。
A、(a-1)(c-1)>0
B、ac>1
C、ac=1
D、ac<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,互不相同的點(diǎn)A1,A2,…,An,…和B1,B2,…,Bn,…分別在角O的兩條邊上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面積均相等.設(shè)OAn=an,若a1=1,a2=2,則a9=(  )
A、
19
B、
22
C、5
D、2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列兩個(gè)命題:
①“p∨q”為真是“?p”為假的必要不充分條件;
②“?x∈R,使sinx>0”的否定是“?x∈R,使sinx≤0”.
其中說(shuō)法正確的是(  )
A、①真②假
B、①假②真
C、①和②都為假
D、①和②都為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若log5
1
3
•log36•log6x=2,則x等于( 。
A、9
B、
1
9
C、25
D、
1
25

查看答案和解析>>

同步練習(xí)冊(cè)答案