如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF=AD=a,G是EF的中點(diǎn),則GB與平面AGC所成角的正弦值為(  )

A.B.C.D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)
如圖,在三棱錐中,的中點(diǎn),平面,垂足落在線段上,已知
(1)證明:;
(2)在線段上是否存在點(diǎn),使得二面角為直二面角?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題満分12分)
如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點(diǎn).
(Ⅰ)證明AD⊥D1F;
(Ⅱ)求AE與D1F所成的角;
(Ⅲ)證明面AED⊥面A1FD1;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)平面EFGH分別平行空間四邊形ABCD中的CD與AB且交BD、AD、
AC、BC于E、F、G、H.CD=a,AB=b,CD⊥AB.
(1)求證EFGH為矩形;
(2)點(diǎn)E在什么位置,SEFGH最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,直二面角D—AB—E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.

(Ⅰ)求證AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的大小;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

三棱錐中,兩兩垂直且相等,點(diǎn)分別是線段上移動(dòng),且滿足,,則所成角余弦值的取值范圍是(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)正方體的棱長(zhǎng)為2,則點(diǎn)到平面的距離是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖所示,已知空間四邊形OABC中,|OB|=|OC|,且∠AOB=∠AOC,則、夾角θ的余弦值為(  )

A.0 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知向量a=(1,-1,1),b=(-1,2,1),且ka-b與a-3b互相垂直,則k的值是(  )

A.1B.C.D.-

查看答案和解析>>

同步練習(xí)冊(cè)答案