(2012•泉州模擬)已知實數(shù)x,y滿足
x-y+2≥0
x+y≥0
x2+y2≤4
則z=2x+y的最大值是( 。
分析:作出不等式組表示的平面區(qū)域,由z=2x+y可得y=-2x+z,則z表示直線z=2x+y在y軸上的截距,截距越大,z越大,結(jié)合圖象可知,當(dāng)z=2x+y與圓相切時,z最大,由直線與圓心相切的 性質(zhì)求z的最大值
解答:解:作出不等式組表示的平面區(qū)域,如圖所示
由z=2x+y可得y=-2x+z,則z表示直線z=2x+y在y軸上的截距,截距越大,z越大
結(jié)合圖象可知,當(dāng)z=2x+y與圓相切時,z最大
由直線與圓心相切的 性質(zhì)可知,
|z|
5
=2
,(z>0),此時z=2
5

故選D
點評:本題主要考出了利用線性規(guī)劃求解目標(biāo)函數(shù)的最值,解題的關(guān)鍵是明確目標(biāo)函數(shù)的幾何意義
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)請寫出fn(x)的表達(dá)式(不需證明);
(Ⅱ)設(shè)fn(x)的極小值點為Pn(xn,yn),求yn;
(Ⅲ)設(shè)gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,試求a-b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)下列函數(shù)中,既是偶函數(shù),且在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},則A∩B為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)設(shè)函數(shù)f(x)=ax2+lnx.
(Ⅰ)當(dāng)a=-1時,求函數(shù)y=f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-
12
的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).若a=1,試問:在區(qū)間[1,10]上是否存在k(k<100)個正數(shù)x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)設(shè)函數(shù)y=f(x)的定義域為D,若對于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究并利用函數(shù)f(x)=x3-3x2-sin(πx)的對稱中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=( 。

查看答案和解析>>

同步練習(xí)冊答案