在平行四邊形ABCD中,點(diǎn)A,B,C對(duì)應(yīng)的復(fù)數(shù)分別是4+i,3+4i,5+2i,則點(diǎn)D對(duì)應(yīng)的復(fù)數(shù)是________.
6-i
分析:找出復(fù)平面內(nèi)各復(fù)數(shù)對(duì)應(yīng)的點(diǎn),則以原點(diǎn)為起點(diǎn),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為終點(diǎn)的向量可求,設(shè)出點(diǎn)D的坐標(biāo),由向量的坐標(biāo)運(yùn)算求出平行四邊形四邊對(duì)應(yīng)的向量,由向量相等列式求出D的坐標(biāo),則D點(diǎn)對(duì)應(yīng)的復(fù)數(shù)可求.
解答:在平行四邊形ABCD中,因?yàn)辄c(diǎn)A,B,C對(duì)應(yīng)的復(fù)數(shù)分別是4+i,3+4i,5+2i,
則
,
=(3,4),
設(shè)D(x,y),則
,
所以
=(4,1)-(3,4)=(1,-3).
=(x-5,y-2).
=(5,2)-(3,4)=(2,-2).
=(x-4,y-1).
因?yàn)锳BCD為平行四邊形,所以
,則1×(y-2)-(-3)(x-5)=0 ①,
,則2×(y-1)-(-2)(x-4)=0 ②.
聯(lián)立①②得:x=6,y=-1.
則D對(duì)應(yīng)的復(fù)數(shù)是6-i.
故答案為6-i.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的坐標(biāo)運(yùn)算,考查了復(fù)數(shù)代數(shù)形式的幾何意義,考查了共線向量基本定理,是基礎(chǔ)題.