【題目】兩個(gè)數(shù)列、,當(dāng)同時(shí)在時(shí)取得相同的最大值,我們稱具有性質(zhì),其中.

1)設(shè)的二項(xiàng)展開式中的系數(shù)為),,記,,依次下去,,組成的數(shù)列是;同樣地,的二項(xiàng)展開式中的系數(shù)為),,記,,依次下去,,組成的數(shù)列是;判別是否具有性質(zhì),請(qǐng)說明理由;

2)數(shù)列的前項(xiàng)和是,數(shù)列的前項(xiàng)和是,若具有性質(zhì),,則這樣的數(shù)列一共有多少個(gè)?請(qǐng)說明理由;

3)兩個(gè)有限項(xiàng)數(shù)列滿足,,且,是否存在實(shí)數(shù),使得具有性質(zhì),請(qǐng)說明理由.

【答案】1)不具有;見解析(2102;見解析(3)見解析,.

【解析】

1展開式中系數(shù)最大項(xiàng)為,然后再判斷展開式中的系數(shù)是否是最大值,即可得結(jié)果;

2)令,則,結(jié)合,求得,求得的最大值,由具有性質(zhì),可得時(shí),,由,結(jié)合求得的范圍,再由是等差數(shù)列,可得,然后聯(lián)立,解出數(shù)列的個(gè)數(shù);

3)由進(jìn)行迭代,可得,因?yàn)?/span>具有性質(zhì),

所以,從而可

解:(1展開式的通項(xiàng)為,則數(shù)列的通項(xiàng)為

故數(shù)列中的最大值為

展開式的通項(xiàng)為

而當(dāng)時(shí),得,

所以不具有性質(zhì)

2)令,則

,即,

解得

因?yàn)?/span>,

所以當(dāng)時(shí),,

因?yàn)?/span> 具有性質(zhì),

所以時(shí),,

因?yàn)?/span>,

所以,

因?yàn)?/span>,

所以,

,解得共有102個(gè)數(shù)列;

3)因?yàn)?/span>

當(dāng),時(shí),

所以

當(dāng)時(shí),符合上式

所以,

因?yàn)?/span>是有限項(xiàng)數(shù)列,所以一定存在最大項(xiàng),

設(shè),因?yàn)?/span>具有性質(zhì)

所以,

顯然成立,

假設(shè),則顯然,矛盾

同理,也矛盾,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年電子商務(wù)蓬勃發(fā)展,現(xiàn)從某電子商務(wù)平臺(tái)評(píng)價(jià)系統(tǒng)中隨機(jī)選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果顯示:網(wǎng)購(gòu)者對(duì)商品的滿意率為0.70,對(duì)快遞的滿意率為0.60,其中對(duì)商品和快遞都滿意的交易為80次.

1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并回答在犯錯(cuò)誤的概率不超過0.10的前提下,能否認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿意與對(duì)快遞滿意之間有關(guān)系”?

對(duì)快遞滿意

對(duì)快遞不滿意

合計(jì)

對(duì)商品滿意

80

對(duì)商品不滿意

合計(jì)

200

2)為進(jìn)一步提高購(gòu)物者的滿意度,平臺(tái)按分層抽樣方法從200次交易中抽取10次交易進(jìn)行問卷調(diào)查,詳細(xì)了解滿意與否的具體原因,并在這10次交易中再隨機(jī)抽取2次進(jìn)行電話回訪,聽取購(gòu)物者意見.求電話回訪的2次交易至少有一次對(duì)商品和快遞都滿意的概率.

附:(其中為樣本容量)

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】跨年迎新聯(lián)歡晚會(huì)簡(jiǎn)稱跨年晚會(huì),是指每年陽歷年末1231日晚上各電視臺(tái)和政府為喜迎新而精心策劃的演唱會(huì)活動(dòng),跨年晚會(huì)首次出現(xiàn)在港臺(tái)地區(qū),跨年晚會(huì)因形式和舉辦地不同因而名稱也不同,如央視啟航2020跨年盛典,湖南衛(wèi)視跨年演唱會(huì),東方衛(wèi)視迎新晚會(huì)等.某電視臺(tái)為了了解2020年舉辦的跨年迎新晚會(huì)觀眾的滿意度,現(xiàn)分別隨機(jī)選出名觀眾對(duì)迎新晚會(huì)的質(zhì)量評(píng)估評(píng)分,最高分為分,綜合得分情況如下表所示:

綜合得分

觀眾人數(shù)

5

10

25

30

15

10

5

根據(jù)表中的數(shù)據(jù),回答下列問題:

1)根據(jù)表中的數(shù)據(jù),繪制這位觀眾打分的頻率分布直方圖;

2)已知觀眾的評(píng)分近似服從,其中是反應(yīng)隨機(jī)變量取值的平均水平的特征數(shù),工作人員在分析數(shù)據(jù)時(shí)發(fā)現(xiàn),可用位觀眾評(píng)分的平均數(shù)估計(jì),但由于評(píng)分觀眾人數(shù)較少,誤差較大,所以不能直接用位觀眾評(píng)分的標(biāo)準(zhǔn)差的值估計(jì),而在這位觀眾打分的頻率分布直方圖的基礎(chǔ)上依據(jù)來估計(jì)更科學(xué)合理,試求的估計(jì)值(的結(jié)果精確到小數(shù)點(diǎn)后兩位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定合格”“不合格兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:合格5分,不合格0.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下:

等級(jí)

不合格

合格

得分

頻數(shù)

6

a

24

b

1)由該題中頻率分布直方圖求測(cè)試成績(jī)的平均數(shù)和中位數(shù);

2)其他條件不變?cè)谠u(píng)定等級(jí)為合格的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測(cè)試得分低于80分的前提下,第2次抽取的測(cè)試得分仍低于80分的概率;

3)用分層抽樣的方法,從評(píng)定等級(jí)為合格不合格的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2010年至2018年之間,受益于基礎(chǔ)設(shè)施建設(shè)對(duì)光纖產(chǎn)品的需求,以及個(gè)人計(jì)算機(jī)及智能手機(jī)的下一代規(guī)格升級(jí),電動(dòng)汽車及物聯(lián)網(wǎng)等新機(jī)遇,全球連接器行業(yè)增長(zhǎng)呈現(xiàn)加速狀態(tài).根據(jù)如下折線圖,下列結(jié)論正確的個(gè)數(shù)為(

①每年市場(chǎng)規(guī)模逐年增加;

②市場(chǎng)規(guī)模增長(zhǎng)最快的是2013年至2014年;

③這8年的市場(chǎng)規(guī)模增長(zhǎng)率約為40%;

2014年至2018年每年的市場(chǎng)規(guī)模相對(duì)于2010年至2014年每年的市場(chǎng)規(guī)模,數(shù)據(jù)方差更小,變化比較平穩(wěn).

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C的極坐標(biāo)方程為

(Ⅰ)求直線l和曲線C的直角坐標(biāo)方程;

(Ⅱ)點(diǎn)M為曲線C上一點(diǎn),求M到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),

①若曲線與直線相切,求c的值;

②若曲線與直線有公共點(diǎn),求c的取值范圍.

(2)當(dāng)時(shí),不等式對(duì)于任意正實(shí)數(shù)x恒成立,當(dāng)c取得最大值時(shí),求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求曲線處的切線方程;

2)對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),試求方程的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,河南省鄭州市的房?jī)r(jià)依舊是鄭州市民關(guān)心的話題.總體來說,二手房房?jī)r(jià)有所下降,相比二手房而言,新房市場(chǎng)依然強(qiáng)勁,價(jià)格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計(jì)鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是(

A.月工資增長(zhǎng)率最高的為8月份

B.該銷售人員一年有6個(gè)月的工資超過4000

C.由此圖可以估計(jì),該銷售人員202067,8月的平均工資將會(huì)超過5000

D.該銷售人員這一年中的最低月工資為1900

查看答案和解析>>

同步練習(xí)冊(cè)答案