精英家教網 > 高中數學 > 題目詳情

【題目】已知關于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____

【答案】(﹣∞,﹣6]∪[6,+∞)

【解析】

由條件利用二次函數的性質可得ac=﹣1,ab=1, c=-b轉為(a﹣b)+,利用基本不等式求得它的范圍.

因為一元二次不等式ax2+2x+b>0的解集為{x|x≠c},由二次函數圖像的性質可得a>0,二次函數的對稱軸為x==c,△=4﹣4ab=0,

∴ac=﹣1,ab=1,∴c=,b=,c=-b,

==(a﹣b)+,

a﹣b>0時,由基本不等式求得(a﹣b)+≥6,

a﹣b<0時,由基本不等式求得﹣(a﹣b)﹣≥6,即(a﹣b)+≤﹣6,

(其中a+c≠0)的取值范圍為:(﹣∞,﹣6]∪[6,+∞),

故答案為:(﹣∞,﹣6]∪[6,+∞).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱中,,.

1)證明:

2)若,在線段上是否存在一點,使二面角的余弦值為?若存在,求的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】九章算術是我國古代著名數學經典其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小以鋸鋸之,深一寸,鋸道長一尺問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深一寸,鋸道長一尺問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示陰影部分為鑲嵌在墻體內的部分已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )(注:1丈寸,,)

A. 600立方寸 B. 610立方寸 C. 620立方寸 D. 633立方寸

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在直角坐標系中,點到拋物線的準線的距離為,點上的定點,、上的兩個動點,且線段的中點在線段.

1)拋物線的方程及的值;

2)當點、分別在第一、四象限時,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】新中國成立70周年以來,黨中央國務院高度重視改善人民生活,始終把提高人民生活水平作為一切工作的出發(fā)點和落腳點城鄉(xiāng)居民收入大幅增長,居民生活發(fā)生了翻天覆地的變化.下面是1949年及2015~2018年中國居民人均可支配收入(元)統(tǒng)計圖.以下結論中不正確的是(

A.20l5-2018年中國居民人均可支配收入與年份成正相關

B.2018年中居民人均可支配收入超過了1949年的500

C.2015-2018年中國居民人均可支配收入平均超過了24000

D.2015-2018年中圍居民人均可支配收入都超過了1949年的500

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等差數列首項和公差都是,記的前n項和為,等比數列各項均為正數,公比為q,記的前n項和為

1)寫出構成的集合A;

2)若將中的整數項按從小到大的順序構成數列,求的一個通項公式;

3)若q為正整數,問是否存在大于1的正整數k,使得同時為(1)中集合A的元素?若存在,寫出所有符合條件的的通項公式,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正四棱柱中,底面的邊長為1為正方形的中心.

1)求證:平面;

2)若異面直線所成的角的正弦值為,求直線到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的短軸端點為,,點是橢圓上的動點,且不與,重合,點滿足,.

(Ⅰ)求動點的軌跡方程;

(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數學中,布勞威爾不動點定理是拓撲學里一個非常重要的不動點定理,它可應用到有限維空間,并構成一般不動點定理的基石.布勞威爾不動點定理得名于荷蘭數學家魯伊茲·布勞威爾(L.E. J. Brouwer),簡單的講就是對于滿足一定條件的連續(xù)函數,存在一個點,使得,那么我們稱該函數為不動點函數,下列為不動點函數的是(

A.B.

C.D.

查看答案和解析>>

同步練習冊答案