【題目】已知橢圓C: (a>b>0)的離心率為,以原點(diǎn)O為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x﹣y+=0相切.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線l:y=kx+m與橢圓C相交于A、B兩點(diǎn),且kOAkOB=,判斷△AOB的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

【答案】12

【解析】試題分析:(1由橢圓的離心率等于,原點(diǎn)到直線的距離等于及隱含條件聯(lián)立方程組求解的值,則橢圓的標(biāo)準(zhǔn)方程可求;(2)聯(lián)立直線方程和橢圓方程,消去后利用根與系數(shù)關(guān)系得到兩點(diǎn)的橫坐標(biāo)的和與積,由弦長(zhǎng)公式求得,由點(diǎn)到直線的距離公式求得的距離,代入三角形的面積公式證得答案.

試題解析:(1)由題意得

橢圓的方程為.

(2)設(shè), 則A,B的坐標(biāo)滿足

消去y化簡(jiǎn)得 ,

,

=

,即

=

O到直線的距離

===為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推動(dòng)乒乓球運(yùn)動(dòng)的發(fā)展,某乒乓球比賽允許不同協(xié)會(huì)的運(yùn)動(dòng)員組隊(duì)參加.現(xiàn)有來自甲協(xié)會(huì)的運(yùn)動(dòng)員名,其中種子選手名;乙協(xié)會(huì)的運(yùn)動(dòng)員名,其中種子選手名.從這名運(yùn)動(dòng)員中隨機(jī)選擇人參加比賽.

(1)設(shè)為事件“選出的人中恰有名種子選手,且這名種子選手來自同一個(gè)協(xié)會(huì)”求事件發(fā)生的概率;

(2)設(shè)為選出的人中種子選手的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說:“是作品獲得一等獎(jiǎng)”;

乙說:“作品獲得一等獎(jiǎng)”;

丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說:“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,建立平面直角坐標(biāo)系xOy,x軸在地平面上,y軸垂直于地平面,單位長(zhǎng)度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程ykx (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).

設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標(biāo)a不超過多少時(shí),炮彈可以擊中它?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱ABCA1B1C1中,側(cè)面AA1C1C是菱形,AC1A1C交于點(diǎn)O,點(diǎn)EAB的中點(diǎn).

(1)求證:OE∥平面BCC1B1.

(2)AC1A1B,求證:AC1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費(fèi)支出

1

2

4

6

11

13

19

銷售額

19

32

40

44

52

53

54

1)若用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

2)用二次函數(shù)回歸模型擬合的關(guān)系,可得回歸方程:,

經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的分別約為,請(qǐng)用說明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)超市廣告費(fèi)支出為3萬元時(shí)的銷售額.

參數(shù)數(shù)據(jù)及公式:,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期為.

(1)求ω的值;

(2)在△ABC中,sinB,sinA,sinC成等比數(shù)列,求此時(shí)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù). 

(1)判斷函數(shù)的單調(diào)性并證明;

(2)當(dāng)時(shí),對(duì)于任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x-1x2-2,試?yán)没境醯群瘮?shù)的圖象,判斷f(x)有幾個(gè)零點(diǎn),并利用零點(diǎn)存在性定理確定各零點(diǎn)所在的區(qū)間(各區(qū)間長(zhǎng)度不超過1).

查看答案和解析>>

同步練習(xí)冊(cè)答案