19.已知函數(shù)y=a+cosx在區(qū)間[0,2π]上有且只有一個(gè)零點(diǎn),則a=1.

分析 作函數(shù)y=cosx在區(qū)間[0,2π]上的圖象,從而結(jié)合圖象解得.

解答 解:作函數(shù)y=cosx在區(qū)間[0,2π]上的圖象如圖所示,
結(jié)合圖象可知,
若y=a+cosx在區(qū)間[0,2π]上有且只有一個(gè)零點(diǎn),
則a-1=0,
故a=1;
故答案為:1

點(diǎn)評(píng) 本題考查了學(xué)生對(duì)三角函數(shù)的掌握情況及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問(wèn)題:
組別分組頻數(shù)頻率
第1組[50,60)80.16
第2組[60,70)a
第3組[70,80)200.40
第4組[80,90)0.08
第5組[90,100]2b
合計(jì)
(1)寫(xiě)出a,b,x,y的值.
(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng).
①求所抽取的2名同學(xué)中至少有1名同學(xué)的成績(jī)?cè)赱90,100]內(nèi)的概率;
②求所抽取的2名同學(xué)來(lái)自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(Ⅰ)求${(-\frac{7}{8})^0}+{(\frac{1}{8})^{-\;\;\frac{1}{3}}}+\root{4}{{{{(3-π)}^4}}}$的值;
(Ⅱ)求${7^{{{log}_7}2}}+lg25+2lg2-ln\sqrt{e^3}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$α∈(\frac{5}{4}π\(zhòng);,\;\frac{3}{2}π)$,且滿足$tanα+\frac{1}{tanα}=8$,則sinαcosα=$\frac{1}{8}$;sinα-cosα=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)中,既是奇函數(shù)又在定義域內(nèi)單調(diào)遞增的是( 。
A.y=x3B.y=tanxC.$y={(\frac{1}{2})^x}$D.y=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)$f(x)=\sqrt{3}sin2x-2{cos^2}x$.
(1)求$f(\frac{π}{6})$的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)點(diǎn)A,B的坐標(biāo)分別為(4,0),(-4,0),直線AP,BP相交于點(diǎn)P,且它們的斜率之積為實(shí)數(shù)m,關(guān)于點(diǎn)P的軌跡下列說(shuō)法正確的是( 。
A.當(dāng)m<-1時(shí),軌跡為焦點(diǎn)在x軸上的橢圓(除與x軸的兩個(gè)交點(diǎn))
B.當(dāng)-1<m<0時(shí),軌跡為焦點(diǎn)在y軸上的橢圓(除與y軸的兩個(gè)交點(diǎn))
C.當(dāng)m>0時(shí),軌跡為焦點(diǎn)在x軸上的雙曲線(除與x軸的兩個(gè)交點(diǎn))
D.當(dāng)0<m<1時(shí),軌跡為焦點(diǎn)在y軸上的雙曲線(除與y軸的兩個(gè)交點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=xsinx,則$f'({\frac{π}{4}})$=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年湖北省仙桃市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

等比數(shù)列的各項(xiàng)均為正數(shù),且,則

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案