【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

總計(jì)

愛好

40

20

60

不愛好

20

30

50

總計(jì)

60

50

110

算得,

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是(
A.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

【答案】C
【解析】解:由題意算得,
∵7.8>6.635,
∴有0.01=1%的機(jī)會(huì)錯(cuò)誤,
即有99%以上的把握認(rèn)為“愛好這項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在約束條件 下,當(dāng)t≥0時(shí),其所表示的平面區(qū)域的面積為S(t),S(t)與t之間的函數(shù)關(guān)系用下列圖象表示,正確的應(yīng)該是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且離心率為

)求橢圓的方程.

)已知雙曲線的離心率是橢圓的離心率的倒數(shù),其頂點(diǎn)為橢圓的焦點(diǎn),求雙曲線的方程.

)設(shè)直線與雙曲線交于, 兩點(diǎn),過的直線與線段有公共點(diǎn),求直線的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是某條公共汽車路線收支差額y與乘客量x的圖象(收支差額=車票收入—支出費(fèi)用)由于目前本條線路在虧損,公司有關(guān)人員提出了兩條建議:

建議(Ⅰ)是不改變車票價(jià)格,減少支出費(fèi)用;建議(Ⅱ)是不改變支出費(fèi)用,提高車票價(jià)格. 圖中虛線表示調(diào)整前的狀態(tài),實(shí)線表示調(diào)整后的狀態(tài). 在上面四個(gè)圖象中

A. ①反映了建議(),③反映了建議() B. ①反映了建議(),③反映了建議()

C. ②反映了建議(),④反映了建議() D. ④反映了建議(),②反映了建議()

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),短軸長為,點(diǎn)在橢圓上.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若斜率為的直線與橢圓交于 兩點(diǎn), 為弦中點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=x3+mlog2(x+ )(m∈R,m>0),則不等式f(m)+f(m2﹣2)≥0的解是 . (注:填寫m的取值范圍)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信支付誕生于微信紅包,早期知識(shí)作為社交的一部分“發(fā)紅包”而誕生的,在發(fā)紅包之余才發(fā)現(xiàn),原來微信支付不僅可以用來發(fā)紅包,還可以用來支付,現(xiàn)在微信支付被越來越多的人們所接受,現(xiàn)從某市市民中隨機(jī)抽取300為對(duì)是否使用微信支付進(jìn)行調(diào)查,得到下列的列聯(lián)表:

年輕人

非年輕人

總計(jì)

經(jīng)常使用微信支付

165

225

不常使用微信支付

合計(jì)

90

300

根據(jù)表中數(shù)據(jù),我們得到的統(tǒng)計(jì)學(xué)的結(jié)論是:由__________的把握認(rèn)為“使用微信支付與年齡有關(guān)”。

其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,,

(1)若,求實(shí)數(shù)的值

(2)若,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長為4的正方形ABCD的邊上有動(dòng)點(diǎn)P,動(dòng)點(diǎn)P從B點(diǎn)開始沿折線BCDA運(yùn)動(dòng)到A終止,設(shè)P點(diǎn)移動(dòng)的距離為x,的面積為S.

(1)求函數(shù)S=f(x)的解析式、定義域,畫出函數(shù)圖像;

(2)求函數(shù)S=f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案