已知log427=a,log52=b,求lg2,lg3的值.
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:把已知的對數(shù)式換底,轉(zhuǎn)化為含有l(wèi)g2,lg3的方程組求解.
解答: 解:∵log427=a,log52=b,
3
2
lg3
lg2
=a
lg2
1-lg2
=b
,解得
lg2=
b
1+b
lg3=
2ab
3(1+b)
點(diǎn)評:當(dāng)幾個對數(shù)的底數(shù)不同時,可借助于對數(shù)的換底公式運(yùn)算,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(k•2x+1-2),k∈R.
(1)當(dāng)k=1時,求函數(shù)f(x)的定義域;
(2)當(dāng)k=3是,求函數(shù)f(x)的零點(diǎn);
(3)若函數(shù)f(x)在區(qū)間[0,10]上總有意義,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一空間幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖都是腰長為2的等腰直角三角形,則該幾何體的側(cè)面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某區(qū)為了解全區(qū)2800名九年級學(xué)生英語口語考試成績的情況,從中隨機(jī)抽取了部分學(xué)生的成績(滿分24分,得分均為整數(shù)),制成下表:
分?jǐn)?shù)段
(x分)
x≤1617≤x≤1819≤x≤2021≤x≤2223≤x≤24
人 數(shù)101535112128
(1)填空:
①本次抽樣調(diào)查共抽取了
 
名學(xué)生;
②學(xué)生成績的中位數(shù)落在
 
分?jǐn)?shù)段;
③若用扇形統(tǒng)計圖表示統(tǒng)計結(jié)果,則分?jǐn)?shù)段為x≤16的人數(shù)所對應(yīng)扇形的圓心角為
 
°;
(2)如果將21分以上(含21分)定為優(yōu)秀,請估計該區(qū)九年級考生成績?yōu)閮?yōu)秀的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1
a
+
2
b
=1,(a>0,b>0)點(diǎn)(0,b)到直線x-2y-a=0的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,F(xiàn),H分別為棱CC1,AA1的中點(diǎn),O為AC與BD的交點(diǎn).
(1)平面BDF∥平面B1D1H;
(2)A1O⊥平面BDF;
(3)平面A1BD⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,-2),點(diǎn)C滿足
OC
OA
OB
,其中α,β∈R,且α-2β=1.
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與雙曲線
x2
a2
-y2=13,(a>0)交于兩點(diǎn)M,N,且OM⊥ON,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,圓錐的全面積是3π,底面積是π,則它的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(x,y)為由不等式組
0≤x≤
2
y≤2
x≤
2
y
,所確定的平面區(qū)域上的動點(diǎn),若點(diǎn)A(
2
,1)
,則z=
OM
OA
的最大值為(  )
A、3
B、3
2
C、4
D、4
2

查看答案和解析>>

同步練習(xí)冊答案