(1)設(shè)y=(x-a)n,證明y¢=n(x-a)n-1;
(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明:。
科目:高中數(shù)學(xué) 來源: 題型:044
已知a>0,n為正整數(shù).(1)設(shè)y=(x-a)n,證明y¢=(x-a)n-1;
(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明f¢n+1(n+1)>(n+1)f¢n(n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
已知a>0,n為正整數(shù)。
(1)設(shè)y=(x-a)n,證明y¢=n(x-a)n-1;
(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明f¢n+1(n+1)>(n+1)f¢n(n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
已知a>0,n為正整數(shù).
(1)設(shè)y=(x-a)n,證明y¢=n(x-a)n-1;
(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明f¢n+1(n+1)>(n+1)f¢n(n)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(1)設(shè)y=(x-a)n,證明y¢=n(x-a)n-1;
(2)設(shè)fn(x)=xn-(x-a)n,對任意n³a,證明f¢n+1(n+1)>(n+1)f¢n(n)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com