【題目】已知函數(shù)f(x)=(x﹣ )ex , g(x)=4x2﹣4x+mln(2x)(m∈R),g(x)存在兩個(gè)極值點(diǎn)x1 , x2(x1<x2).
(1)求f(x1﹣x2)的最小值;
(2)若不等式g(x1)≥ax2恒成立,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:

令g'(x)=0得8x2﹣4x+m=0①,

因?yàn)間(x)存在兩個(gè)極值點(diǎn)x1,x2(x1<x2),

所以方程①在(0,+∞)上有兩個(gè)不等實(shí)根x1,x2,

所以 解得 ,

所以 ,

當(dāng) 時(shí),f'(x)<0,當(dāng) 時(shí),f'(x)>0,

所以f(x1﹣x2)的最小值為


(2)解:)由(Ⅰ)可知,

由g(x1)≥ax2 ,

所以

=

=

=

=

(x)= ),

'(x)=

因?yàn)? ,

所以 ,φ'(x)<0,即φ(x)在 遞減,

綜上,實(shí)數(shù)a的取值范圍為(﹣∞,﹣3﹣2ln2]


【解析】(1)求出函數(shù)的導(dǎo)數(shù),求出極值點(diǎn),g(x)存在兩個(gè)極值點(diǎn)x1 , x2(x1<x2),推出 ,求出m的范圍,化簡(jiǎn)x1﹣x2 , 通過(guò) 時(shí),f'(x)<0,當(dāng) 時(shí),f'(x)>0,求解f(x1﹣x2)的最小值.(2)通過(guò)g(x1)≥ax2 ,化簡(jiǎn) = ,構(gòu)造(x)= ),求出導(dǎo)函數(shù),利用函數(shù)的單調(diào)性求解最值即可.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此試驗(yàn)重復(fù)n輪,第n輪的點(diǎn)數(shù)分別記為xn , yn , 如果點(diǎn)數(shù)滿足xn ,則認(rèn)為第n輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束.
(I)求第一輪闖關(guān)成功的概率;
(Ⅱ)如果第i輪闖關(guān)成功所獲的獎(jiǎng)金數(shù)f(i)=10000× (單位:元),求某人闖關(guān)獲得獎(jiǎng)金不超過(guò)1250元的概率;
(Ⅲ)如果游戲只進(jìn)行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量X,求x的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)雙曲線 (a>0,b>0)的右焦點(diǎn)F2(c,0)作圓x2+y2=a2的切線,切點(diǎn)為M,延長(zhǎng)F2M交拋物線y2=﹣4cx于點(diǎn)P,其中O為坐標(biāo)原點(diǎn),若 ,則雙曲線的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,AB=2,AA1=3,點(diǎn)D為BC的中點(diǎn);
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點(diǎn)E為A1C上的點(diǎn),且滿足 =m (m∈R),若二面角E﹣AD﹣C的余弦值為 ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若實(shí)數(shù)a,b,c,d滿足 = =1,則(a﹣c)2+(b﹣d)2的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a,b滿足﹣2≤a≤2,﹣2≤b≤2,則函數(shù)y= x3 ax2+bx﹣1有三個(gè)單調(diào)區(qū)間的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)ex+ax2有兩個(gè)零點(diǎn) (Ⅰ)當(dāng)a=1時(shí),求f(x)的最小值;
(Ⅱ)求a的取值范圍;
(Ⅲ)設(shè)x1 , x2是f(x)的兩個(gè)零點(diǎn),證明:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且 是1與an的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列{ }的前n項(xiàng)和,證明: <Tn<1(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一般情況下,城市主干道上的車流速度 (單位:千米/小時(shí))是車流密度 (單位:輛/千米)的函數(shù)。當(dāng)主干道上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí)。研究表明:當(dāng) 時(shí),車流速度 是車流密度 的一次函數(shù)。
(1)當(dāng) 時(shí),求函數(shù) 的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)主干道上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí)) 可以達(dá)到最大?并求出最大值。(精確到1輛/小時(shí))

查看答案和解析>>

同步練習(xí)冊(cè)答案