已知函數(shù)數(shù)學(xué)公式,求f(f(-3))的值.

解:∵-3是奇數(shù),
∴f(-3)=0,
∴f(f(-3))=f(0)=1.
分析:由題設(shè)條件知f(f(-3))=f(0),計(jì)算可得答案.
點(diǎn)評(píng):本題考查分段函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinx+1.
(1)設(shè)常數(shù)ω>0,若y=f(ωx),在區(qū)間[-
π
2
,
3
]上是增函數(shù),求ω的取值范圍;
(2)當(dāng)x∈[-
π
6
,
3
]時(shí),g(x)=f(x)+m恰有兩個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)對(duì)于任意x,y∈R總有f(x)+f(y)=f(x+y)且當(dāng)x>0時(shí),f(x)<0,f(1)=-1
①判斷f(x)奇偶性
②求證:f(x)在R上是減函數(shù).
③求f(x)在[-2,4]上的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)已知函數(shù)f(x)=ax3+
1
2
x2-2x+c
,在點(diǎn)(-
1
3
,f(-
1
3
))
的切線與直線y=-2x+1平行,且函數(shù)的圖象過(guò)原點(diǎn);
(1)求f(x)的解析式及極值;
(2)若g(x)=
1
2
bx2-x+d
,是否存在實(shí)數(shù)b,使得函數(shù)g(x)與f(x)的兩圖象恒有三個(gè)不同的交點(diǎn),且其中一個(gè)交點(diǎn)的橫坐標(biāo)為-1?若存在,求出實(shí)數(shù)b的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇0,1],且同時(shí)滿(mǎn)足:①f(1)=3;②f(x)≥2對(duì)一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-2
(1)求f(0)的值
(2)設(shè)s,t∈[0,1],且s<t,求證:f(s)≤f(t)
(3)試比較f(
1
2n
)
1
2n
+2
(n∈N)的大小;
(4)某同學(xué)發(fā)現(xiàn),當(dāng)x=
1
2n
(n∈N)時(shí),有f(x)<2x+2,由此他提出猜想:對(duì)一切x∈(0,1],都有f(x)<2x+2,請(qǐng)你判斷此猜想是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-alnx,g(x)=x-a
x

(1)若a∈R,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在(1,2)上是增函數(shù),g(x)在(0,1)上為減函數(shù),求f(x),g(x)的表達(dá)式;
(3)對(duì)于(2)中的f(x),g(x),求證:當(dāng)x>0時(shí),方程f(x)=g(x)+2有唯-解.

查看答案和解析>>

同步練習(xí)冊(cè)答案